Exemplo n.º 1
0
def get_cv_fold(fold, dataset="HCP"):
    '''
    Brauche train-test-validate wegen Best-model selection und wegen training von combined net
    :return:
    '''

    #For CV
    if fold == 0:
        train, validate, test = [0, 1, 2], [3], [4]
        # train, validate, test = [0, 1, 2, 3, 4], [3], [4]
    elif fold == 1:
        train, validate, test = [1, 2, 3], [4], [0]
    elif fold == 2:
        train, validate, test = [2, 3, 4], [0], [1]
    elif fold == 3:
        train, validate, test = [3, 4, 0], [1], [2]
    elif fold == 4:
        train, validate, test = [4, 0, 1], [2], [3]

    subjects = get_all_subjects(dataset)

    if dataset.startswith("HCP"):
        # subjects = list(Utils.chunks(subjects[:100], 10))   #10 folds
        subjects = list(utils.chunks(subjects, 21))   #5 folds a 21 subjects
        # => 5 fold CV ok (score only 1%-point worse than 10 folds (80 vs 60 train subjects) (10 Fold CV impractical!)
    elif dataset.startswith("Schizo"):
        # 410 subjects
        subjects = list(utils.chunks(subjects, 82))  # 5 folds a 82 subjects
    else:
        raise ValueError("Invalid dataset name")

    subjects = np.array(subjects)
    return list(subjects[train].flatten()), list(subjects[validate].flatten()), list(subjects[test].flatten())
Exemplo n.º 2
0
def create_one_3D_file():
    '''
    Create one big file which contains all 3D Images (not slices).
    '''
    class Config:
        DATASET = "HCP"
        RESOLUTION = "1.25mm"
        FEATURES_FILENAME = "270g_125mm_peaks"
        LABELS_TYPE = np.int16
        DATASET_FOLDER = "HCP"

    data_all = []
    seg_all = []

    print("\n\nProcessing Data...")
    for s in get_all_subjects():
        print("processing data subject {}".format(s))
        data = nib.load(
            join(C.HOME, Config.DATASET_FOLDER, s,
                 Config.FEATURES_FILENAME + ".nii.gz")).get_data()
        data = np.nan_to_num(data)
        data = dataset_utils.scale_input_to_unet_shape(data, Config.DATASET,
                                                       Config.RESOLUTION)
    data_all.append(np.array(data))
    np.save("data.npy", data_all)
    del data_all  # free memory

    print("\n\nProcessing Segs...")
    for s in get_all_subjects():
        print("processing seg subject {}".format(s))
        seg = img_utils.create_multilabel_mask(Config,
                                               s,
                                               labels_type=Config.LABELS_TYPE)
        if Config.RESOLUTION == "2.5mm":
            seg = img_utils.resize_first_three_dims(seg, order=0, zoom=0.5)
        seg = dataset_utils.scale_input_to_unet_shape(seg, Config.DATASET,
                                                      Config.RESOLUTION)
    seg_all.append(np.array(seg))
    print("SEG TYPE: {}".format(seg_all.dtype))
    np.save("seg.npy", seg_all)
Exemplo n.º 3
0
def save_fusion_nifti_as_npy():

    #Can leave this always the same (for 270g and 32g)
    class Config:
        DATASET = "HCP"
        RESOLUTION = "1.25mm"
        FEATURES_FILENAME = "270g_125mm_peaks"
        LABELS_TYPE = np.int16
        LABELS_FILENAME = "bundle_masks"
        DATASET_FOLDER = "HCP"

    DIFFUSION_FOLDER = "32g_25mm"
    subjects = get_all_subjects()

    print("\n\nProcessing Data...")
    for s in subjects:
        print("processing data subject {}".format(s))
        start_time = time.time()
        data = nib.load(
            join(C.NETWORK_DRIVE, "HCP_fusion_" + DIFFUSION_FOLDER,
                 s + "_probmap.nii.gz")).get_data()
        print("Done Loading")
        data = np.nan_to_num(data)
        data = dataset_utils.scale_input_to_unet_shape(data, Config.DATASET,
                                                       Config.RESOLUTION)
        # cut one pixel at the end, because in scale_input_to_world_shape we ouputted 146 -> one too much at the end
        data = data[:-1, :, :-1, :]
        exp_utils.make_dir(
            join(C.NETWORK_DRIVE, "HCP_fusion_npy_" + DIFFUSION_FOLDER, s))
        np.save(
            join(C.NETWORK_DRIVE, "HCP_fusion_npy_" + DIFFUSION_FOLDER, s,
                 DIFFUSION_FOLDER + "_xyz.npy"), data)
        print("Took {}s".format(time.time() - start_time))

        print("processing seg subject {}".format(s))
        start_time = time.time()
        # seg = ImgUtils.create_multilabel_mask(Config, s, labels_type=Config.LABELS_TYPE)
        seg = nib.load(
            join(C.NETWORK_DRIVE, "HCP_for_training_COPY", s,
                 Config.LABELS_FILENAME + ".nii.gz")).get_data()
        if Config.RESOLUTION == "2.5mm":
            seg = img_utils.resize_first_three_dims(seg, order=0, zoom=0.5)
        seg = dataset_utils.scale_input_to_unet_shape(seg, Config.DATASET,
                                                      Config.RESOLUTION)
        np.save(
            join(C.NETWORK_DRIVE, "HCP_fusion_npy_" + DIFFUSION_FOLDER, s,
                 "bundle_masks.npy"), seg)
        print("Took {}s".format(time.time() - start_time))
Exemplo n.º 4
0
            # if idx > 0:
            # np.save(join(C.DATA_PATH, DATASET_FOLDER_PREPROC, subject, filename + ".npy"), data)
            nib.save(
                nib.Nifti1Image(data, affine),
                join(C.DATA_PATH, DATASET_FOLDER_PREPROC, subject,
                     filename + ".nii.gz"))
        else:
            print("skipping file: {}-{}".format(subject, idx))
            raise IOError("File missing")

    for filename in filenames_seg:
        img = nib.load(
            join(C.NETWORK_DRIVE, DATASET_FOLDER, subject,
                 filename + ".nii.gz"))
        data = img.get_data()
        data, _, _, _ = dataset_utils.crop_to_nonzero(data, bbox=bbox)
        # np.save(join(C.DATA_PATH, DATASET_FOLDER_PREPROC, subject, filename + ".npy"), data)
        nib.save(
            nib.Nifti1Image(data, img.affine),
            join(C.DATA_PATH, DATASET_FOLDER_PREPROC, subject,
                 filename + ".nii.gz"))


if __name__ == "__main__":
    print("Output folder: {}".format(DATASET_FOLDER_PREPROC))
    subjects = get_all_subjects(dataset=dataset)
    Parallel(n_jobs=12)(delayed(create_preprocessed_files)(subject)
                        for subject in subjects)
    # for subject in subjects:
    #     create_preprocessed_files(subject)