Exemplo n.º 1
0
def test_cnn_val():
    dataset_params = {
        'batch_size': -1,
        'path': 'resources/train_data/chars',
        'labels_path': 'resources/train_data/chars_list_val.pickle',
        'thread_num': 3,
        'gray': True
    }
    val_dataset_reader = DataSet(dataset_params)

    model = Lenet()
    model.compile()

    image, label = val_dataset_reader.batch()

    print("Total dataset number: ", val_dataset_reader.record_number)

    pred, acc = eval_model([model.pred_labels, model.accuracy], {
        model.x: image,
        model.y: label,
        model.keep_prob: 1
    },
                           model_dir="train/model/chars/models/")

    print("Label: {}({}), Pred: {}({})".format(label[0], index2str[label[0]],
                                               pred[0], index2str[pred[0]]))
    # imshow("tmp", image[0])

    print("Accuary: {:.2f}%".format(acc * 100))
Exemplo n.º 2
0
def test_judge_val():
    dataset_params = {
        'batch_size': -1,
        'path': 'resources/train_data/whether_car',
        'labels_path': 'resources/train_data/whether_list_val.pickle',
        'thread_num': 3,
        'gray': False
    }
    val_dataset_reader = DataSet(dataset_params)

    model = Judgenet()
    model.compile()

    image, label = val_dataset_reader.batch()
    print("Total dataset number: ", val_dataset_reader.record_number)

    pred, acc = eval_model([model.pred_labels, model.accuracy], {
        model.x: image,
        model.y: label,
        model.keep_prob: 1
    },
                           model_dir="train/model/whether_car/models/")

    print("Label: {}, Pred: {}".format(label[0], pred[0]))

    print("Accuary: {:.2f}%".format(acc * 100))
Exemplo n.º 3
0
    def identify(self, images):
        tmp = images / 255 * 2 - 1
        pred = eval_model(self.model.pred_labels, {
            self.model.x: tmp,
            self.model.keep_prob: 1
        },
                          model_dir="train/model/chars/models/",
                          eval_sess=self.eval_sess)

        return pred
Exemplo n.º 4
0
    def judge(self, images):
        judgeRes = []
        tmp = images / 255 * 2 - 1

        pred = eval_model(self.model.pred_labels, {
            self.model.x: tmp,
            self.model.keep_prob: 1
        },
                          model_dir="train/model/whether_car/models/",
                          eval_sess=self.eval_sess)

        for i, tmp in enumerate(pred):
            if tmp == 1:
                judgeRes.append(images[i])

        return judgeRes