Exemplo n.º 1
0
def multi_test(height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    x = tf.placeholder(tf.float32, [None, height * width])
    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('.'))
        while 1:
            text, image = get_random_captcha_text_and_image()
            image = convert2gray(image)
            image = image.flatten() / 255
            image_list = [image]
            predict = tf.argmax(
                tf.reshape(
                    y_conv,
                    [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
            vector_list = sess.run(predict,
                                   feed_dict={
                                       x: image_list,
                                       keep_prob: 1
                                   })
            vector_list = vector_list.tolist()
            text_list = [vec2text(vector) for vector in vector_list]
            pre_text = text_list[0]
            flag = u'错误'
            if text == pre_text:
                flag = u'正确'
            print u"实际值(actual):%s, 预测值(predict):%s, 预测结果:%s" % (
                text,
                pre_text,
                flag,
            )
Exemplo n.º 2
0
def captcha_to_text(image_list, height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    '''
    验证码图片转化为文本
    :param image_list:
    :param height:
    :param width:
    :return:
    '''
    x = tf.placeholder(tf.float32, [None, height * width])
    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('.'))
        predict = tf.argmax(
            tf.reshape(y_conv,
                       [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict,
                               feed_dict={
                                   x: image_list,
                                   keep_prob: 1
                               })
        vector_list = vector_list.tolist()
        text_list = [vec2text(vector) for vector in vector_list]
        return text_list[0]
Exemplo n.º 3
0
def captcha2text(image_list, height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    if not isdir('./model'):
        print('Model directory does not exists.')
        return
    x = placeholder(float32, [None, height * width])
    keep_prob = placeholder(float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = Saver()
    with Session() as sess:
        saver.restore(sess, latest_checkpoint('./model/'))
        predict = argmax(reshape(
            y_conv, [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict,
                               feed_dict={
                                   x: image_list,
                                   keep_prob: 1
                               })
        vector_list = vector_list.tolist()
        text_list = [vec2text(vector) for vector in vector_list]
        return text_list
Exemplo n.º 4
0
def captcha2text(image_list, height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    x = tf.placeholder(tf.float32, [None, height * width])

    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('.'))
        predict = tf.argmax(
            tf.reshape(y_conv,
                       [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict,
                               feed_dict={
                                   x: image_list,
                                   keep_prob: 1
                               })
        vector_list = vector_list.tolist()

        text_list = [vec2text(vector) for vector in vector_list]
        builder = tf.saved_model.builder.SavedModelBuilder("./saved_model/")
        builder.add_meta_graph_and_variables(sess, ['cnnCaptcha'])
        builder.save()
        return text_list
def captcha2text(image_list, height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH):
    # disable the tensor flow 2 eager execution function
    tf.compat.v1.disable_eager_execution()

    x = tf.placeholder(tf.float32, [None, height * width])
    keep_prob = tf.placeholder(tf.float32)
    y_conv = cnn_graph(x, keep_prob, (height, width))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('.'))
        print(tf.train.latest_checkpoint('.'))
        predict = tf.argmax(
            tf.reshape(y_conv,
                       [-1, CAPTCHA_LEN, len(CAPTCHA_LIST)]), 2)
        vector_list = sess.run(predict,
                               feed_dict={
                                   x: image_list,
                                   keep_prob: 1
                               })
        vector_list = vector_list.tolist()

        text_list = [vec2text(vector) for vector in vector_list]

        return text_list