Exemplo n.º 1
0
def main():
    trainX, trainY, testX, testY = load_mnist()
    print "Shapes: ", trainX.shape, trainY.shape, testX.shape, testY.shape

    print "\nDigit sample"
    print_digit(trainX[1], trainY[1])

    train_dense.train(trainX, trainY)
    labels = train_dense.test(testX)
    accuracy = np.mean((labels == testY)) * 100.0
    print "\nDNN Test accuracy: %lf%%" % accuracy
Exemplo n.º 2
0
def main():
    print("\n\n\nNOTE")
    print("***First change the Backend from Tesorflow to Theano****")
    print(
        "IF ANY ERRORS OCCUR PLEASE ENSURE THAT THE VERSION OF KERAS USED IS 1.2.2\n\n\n"
    )

    trainX, trainY, testX, testY = load_mnist()
    print "Shapes: ", trainX.shape, trainY.shape, testX.shape, testY.shape

    print "\nDigit sample"
    print_digit(trainX[1], trainY[1])

    # train_dense.train(trainX, trainY)
    labels = train_dense.test(testX)
    accuracy = np.mean((labels == testY)) * 100.0
    print "\nDNN Test accuracy: %lf%%" % accuracy
    '''# train_cnn.train(trainX, trainY) 
Exemplo n.º 3
0
def main():
    trainX, trainY, testX, testY = load_mnist()
    print "Shapes: ", trainX.shape, trainY.shape, testX.shape, testY.shape

    print "\nDigit sample"
    print_digit(trainX[1], trainY[1])

    print 'Cloning from github'
    git_repo = 'https://github.com/tushargupta14/weights.git'
    call(['git', 'clone', git_repo])

    #train_dense.train(trainX,trainY)

    labels = train_dense.test(testX)
    accuracy = np.mean((labels == testY)) * 100.0
    print "\nDNN Test accuracy: %lf%%" % accuracy

    #train_cnn.train(trainX, trainY)
    labels = train_cnn.test(testX)
    accuracy = np.mean((labels == testY)) * 100.0
    print "\nCNN Test accuracy: %lf%%" % accuracy