elif param in float_params: conf_dict[param] = float(c[param]) else: conf_dict[param] = c[param] return conf_dict parser = argparse.ArgumentParser(description='Run training') parser.add_argument("--config", type=str, default="./src/df_v1/config/config_heart.conf", help="Path to the config file.") parser.add_argument("--data.dataset", type=str, default=None) parser.add_argument("--data.split", type=str, default=None) parser.add_argument("--data.batch_size", type=int, default=None) parser.add_argument("--data.episodes", type=int, default=None) parser.add_argument("--data.cuda", type=int, default=None) parser.add_argument("--data.gpu", type=int, default=None) parser.add_argument("--train.patience", type=int, default=None) parser.add_argument("--train.lr", type=float, default=None) # Run training args = vars(parser.parse_args()) config = configparser.ConfigParser() config.read(args['config']) filtered_args = dict((k, v) for (k, v) in args.items() if not v is None) config = preprocess_config({**config['TRAIN'], **filtered_args}) train(config)
test_query, 'data.train_size': train_size, 'data.test_size': test_size, 'data.rotation_range': rotation_range, 'data.width_shift_range': width_shift_range, 'data.height_shift_range': height_shift_range, 'data.horizontal_flip': horizontal_flip, 'model.type': model_type, 'model.nb_layers': nb_layers, 'model.nb_filters': nb_filters, 'train.lr': lr } preprocessed_config = preprocess_config({ **config_from_file['TRAIN'], **custom_params }) train(preprocessed_config) except: print( "Error. Probably memory :c" )