def main():
    config = setup_config()
    config["train_prefix"] = 'sample'

    vocab_src, vocab_tgt = load_vocabularies(config)
    train_data, _, _ = load_data(config,
                                 vocab_src=vocab_src,
                                 vocab_tgt=vocab_tgt)

    val_dl = DataLoader(train_data,
                        batch_size=config["batch_size_eval"],
                        shuffle=False,
                        num_workers=4)
    val_dl = BucketingParallelDataLoader(val_dl)
    sentences_x, sentences_y = next(val_dl)

    model, _, validate_fn = create_model(vocab_src, vocab_tgt, config)
    model.to(torch.device(config["device"]))

    # checkpoint_path = "output/aevnmt_z_loss_en-de_run_0/checkpoints/aevnmt_z_loss_en-de_run_0"
    checkpoint_path = "output/aevnmt_z_loss_de-en_run_0/checkpoints/aevnmt_z_loss_de-en_run_0"
    state = torch.load(checkpoint_path)
    model.load_state_dict(state['state_dict'])

    sample_from_latent(model, vocab_src, vocab_tgt, config)
    sample_from_posterior(model, sentences_x, vocab_src, vocab_tgt, config)
Exemplo n.º 2
0
def main():
    config = setup_config()
    _, dev_data, vocab_src, vocab_tgt = load_dataset_joey(config)
    model, _, validate_fn = create_model(vocab_src, vocab_tgt, config)

    checkpoint_path = "output/aevnmt_word_dropout_0.1/checkpoints/aevnmt_word_dropout_0.1"
    state = torch.load(checkpoint_path)
    model.load_state_dict(state['state_dict'])
def main():
    # config = setup_config()
    config = setup_config()
    config["dev_prefix"] = "dev"
    # config["dev_prefix"] = "test_2016_flickr.lc.norm.tok"
    # config["dev_prefix"] = "test_2017_flickr.lc.norm.tok"

    vocab_src, vocab_tgt = load_vocabularies(config)
    _, dev_data, _ = load_data(config,
                               vocab_src=vocab_src,
                               vocab_tgt=vocab_tgt)

    checkpoint_path = "output/aevnmt_z_loss_en-de_run_1/checkpoints/aevnmt_z_loss_en-de_run_1"

    if config["model_type"] == "coaevnmt":
        model_xy, model_yx, _, _, validate_fn = create_models(
            vocab_src, vocab_tgt, config)
        model_xy.to(torch.device(config["device"]))
        model_yx.to(torch.device(config["device"]))

        state = torch.load(checkpoint_path)
        model_xy.load_state_dict(state['state_dict_xy'])
        model_yx.load_state_dict(state['state_dict_yx'])

        printKL(model_xy,
                dev_data,
                vocab_src,
                vocab_tgt,
                config,
                direction="xy")
        printKL(model_yx,
                dev_data,
                vocab_tgt,
                vocab_src,
                config,
                direction="yx")
    elif config["model_type"] == "aevnmt":
        model, _, _ = create_model(vocab_src, vocab_tgt, config)
        model.to(torch.device(config["device"]))

        state = torch.load(checkpoint_path)
        model.load_state_dict(state['state_dict'])

        printKL(model,
                dev_data,
                vocab_src,
                vocab_tgt,
                config,
                direction="None")
def main():
    config = setup_config()
    config["dev_prefix"] = "comparable"
    vocab_src, vocab_tgt = load_vocabularies(config)
    _, dev_data, _ = load_data(config,
                               vocab_src=vocab_src,
                               vocab_tgt=vocab_tgt)

    model, _, validate_fn = create_model(vocab_src, vocab_tgt, config)
    model.to(torch.device(config["device"]))

    checkpoint_path = "{}/cond_nmt_de-en_run_7/checkpoints/cond_nmt_de-en_run_7".format(
        config["out_dir"])

    state = torch.load(checkpoint_path)
    model.load_state_dict(state['state_dict'])

    model.eval()
    device = torch.device(
        "cpu") if config["device"] == "cpu" else torch.device("cuda:0")
    with torch.no_grad():
        model_hypotheses = []
        references = []

        val_dl = DataLoader(dev_data,
                            batch_size=config["batch_size_eval"],
                            shuffle=False,
                            num_workers=4)
        # val_dl = BucketingParallelDataLoader(val_dl)
        for sentences_x, sentences_y in tqdm(val_dl):

            sentences_x = np.array(sentences_x)
            seq_len = np.array([len(s.split()) for s in sentences_x])
            sort_keys = np.argsort(-seq_len)
            sentences_x = sentences_x[sort_keys]
            # #
            sentences_y = np.array(sentences_y)

            x_in, _, x_mask, x_len = create_batch(sentences_x, vocab_src,
                                                  device)
            x_mask = x_mask.unsqueeze(1)

            if config["model_type"] == "aevnmt":
                qz = model.inference(x_in, x_mask, x_len)
                z = qz.mean

                enc_output, enc_hidden = model.encode(x_in, x_len, z)
                dec_hidden = model.init_decoder(enc_output, enc_hidden, z)

                raw_hypothesis = beam_search(model.decoder, model.emb_tgt,
                                             model.generate_tm, enc_output,
                                             dec_hidden, x_mask,
                                             vocab_tgt.size(),
                                             vocab_tgt[SOS_TOKEN],
                                             vocab_tgt[EOS_TOKEN],
                                             vocab_tgt[PAD_TOKEN], config)
            else:
                enc_output, enc_hidden = model.encode(x_in, x_len)
                dec_hidden = model.decoder.initialize(enc_output, enc_hidden)

                raw_hypothesis = beam_search(model.decoder, model.emb_tgt,
                                             model.generate_tm, enc_output,
                                             dec_hidden, x_mask,
                                             vocab_tgt.size(),
                                             vocab_tgt[SOS_TOKEN],
                                             vocab_tgt[EOS_TOKEN],
                                             vocab_tgt[PAD_TOKEN], config)

            hypothesis = batch_to_sentences(raw_hypothesis, vocab_tgt)

            inverse_sort_keys = np.argsort(sort_keys)
            model_hypotheses += hypothesis[inverse_sort_keys].tolist()

            references += sentences_y.tolist()
        save_hypotheses(model_hypotheses, 0, config, None)
        model_hypotheses, references = clean_sentences(model_hypotheses,
                                                       references, config)
        bleu = sacrebleu.raw_corpus_bleu(model_hypotheses, [references]).score
        print(bleu)
Exemplo n.º 5
0
def main():
    config = setup_config()
    config["dev_prefix"] = "comparable"
    vocab_src, vocab_tgt = load_vocabularies(config)
    _, dev_data, _ = load_data(config,
                               vocab_src=vocab_src,
                               vocab_tgt=vocab_tgt)

    # _, dev_data, vocab_src, vocab_tgt = load_dataset_joey(config)
    model, _, validate_fn = create_model(vocab_src, vocab_tgt, config)
    model.to(torch.device(config["device"]))

    checkpoint_path = "{}/cond_nmt_new_de-en_run_2/checkpoints/cond_nmt_new_de-en_run_2".format(
        config["out_dir"])
    state = torch.load(checkpoint_path)
    model.load_state_dict(state['state_dict'])

    model.eval()
    device = torch.device(
        "cpu") if config["device"] == "cpu" else torch.device("cuda:0")
    with torch.no_grad():
        model_hypotheses = []
        references = []

        val_dl = DataLoader(dev_data,
                            batch_size=config["batch_size_eval"],
                            shuffle=False,
                            num_workers=4)
        val_dl = BucketingParallelDataLoader(val_dl)
        for sentences_x, sentences_y in tqdm(val_dl):
            x_in, _, x_mask, x_len = create_batch(sentences_x, vocab_src,
                                                  device)
            x_mask = x_mask.unsqueeze(1)

            if config["model_type"] == "aevnmt":
                qz = model.inference(x_in, x_mask)
                z = qz.mean

                enc_output, enc_hidden = model.encode(x_in, z)
                dec_hidden = model.init_decoder(enc_output, enc_hidden, z)

                raw_hypothesis = beam_search(model.decoder, model.emb_tgt,
                                             model.generate_tm, enc_output,
                                             dec_hidden, x_mask,
                                             vocab_tgt.size(),
                                             vocab_tgt[SOS_TOKEN],
                                             vocab_tgt[EOS_TOKEN],
                                             vocab_tgt[PAD_TOKEN], config)
            else:
                enc_output, enc_hidden = model.encode(x_in)
                dec_hidden = model.decoder.initialize(enc_output, enc_hidden)

                raw_hypothesis = beam_search(model.decoder, model.emb_tgt,
                                             model.generate, enc_output,
                                             dec_hidden, x_mask,
                                             vocab_tgt.size(),
                                             vocab_tgt[SOS_TOKEN],
                                             vocab_tgt[EOS_TOKEN],
                                             vocab_tgt[PAD_TOKEN], config)

            hypothesis = batch_to_sentences(raw_hypothesis, vocab_tgt)
            model_hypotheses += hypothesis.tolist()

            references += sentences_y.tolist()

        save_hypotheses(model_hypotheses, 0, config, None)