Exemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser(
        description=
        'Creates the dataset to train the matching classifier from triplet annotations'
    )
    parser.add_argument('--downsample_rate',
                        help='number of times that the input is downsampled',
                        default=16,
                        type=int)
    parser.add_argument('--image_size',
                        help='input image size',
                        default=512,
                        type=int)
    parser.add_argument('--no_random',
                        help='true too apply data augmentation',
                        action='store_false')
    parser.add_argument('--add_appearance',
                        help='true add appearance features',
                        action='store_true')
    parser.add_argument('--path_dataset',
                        help='path of the Imagenet VID dataset',
                        type=str)
    args = parser.parse_args()

    downsample_rate = args.downsample_rate
    image_size = (args.image_size, args.image_size)
    rndm = args.no_random
    add_appearace_similarity = args.add_appearance
    path_dataset = args.path_dataset

    print(downsample_rate, image_size, rndm, add_appearace_similarity,
          path_dataset)

    if add_appearace_similarity:

        import roi_nn
        import train_utils

        base_path_model = './demos/YOLOv3/pretrained_models/ILSVRC/1203_1758_model_8/'
        path_roi_model = base_path_model + 'embedding_model/'
        path_weights = train_utils.get_best_weights(base_path_model)
        backbone = roi_nn.get_backbone(path_weights,
                                       downsample_rate=downsample_rate)
        branch_model = roi_nn.load_branch_body(path_roi_model)
    else:
        backbone, branch_model = None, None

    np.random.seed(0)

    path_annotations = './data_annotations/triplet_annotations/triplet_annotations_train.txt'
    get_and_store_dataset_aug(path_annotations, path_dataset, image_size,
                              backbone, branch_model, downsample_rate, rndm,
                              'train')

    path_annotations = './data_annotations/triplet_annotations/triplet_annotations_val.txt'
    get_and_store_dataset_aug(path_annotations, path_dataset, image_size,
                              backbone, branch_model, downsample_rate, rndm,
                              'val')
Exemplo n.º 2
0
def get_best_weights(model_folder, train_params, score=0, iou=0.5):
	annotations_file = train_params['path_annotations'][1]

	eval_t = '{}stats_{}_score{}_iou{}.json'.format(model_folder, annotations_file.split('/')[-1][:-4], score, iou)
	eval_f = '{}stats_stage2_{}_score{}_iou{}.json'.format(model_folder, annotations_file.split('/')[-1][:-4], score, iou)
	eval_t = json.load(open(eval_t, 'r'))
	eval_f = json.load(open(eval_f, 'r'))
	
	if eval_t['total'][1] > eval_f['total'][1]:
		# best_weights
		return train_utils.get_best_weights(model_folder)
	else:
		# Final weights
		return model_folder + 'weights/trained_weights_final.h5'
Exemplo n.º 3
0
def predict_and_store_from_annotations(model_folder,
                                       train_params,
                                       annotations_file,
                                       preds_filename,
                                       score,
                                       iou,
                                       best_weights=True):

    if os.path.isfile(preds_filename): return None, -1

    if best_weights:
        model_path = train_utils.get_best_weights(model_folder)
    else:
        model_path = model_folder + 'weights/trained_weights_final.h5'

    model = EYOLO(
        model_image_size=tuple(train_params['input_shape']),
        model_path=model_path,
        classes_path=train_params['path_classes'],
        anchors_path=train_params['path_anchors'],
        score=score,  # 0.3
        iou=iou,  # 0.5
        td_len=train_params.get('td_len', None),
        mode=train_params.get('mode', None),
        spp=train_params.get('spp', False))

    # Create pred file
    with open(annotations_file, 'r') as f:
        annotations = f.read().splitlines()
    preds = []

    t = time.time()
    total = len(annotations)
    for ann in tqdm(annotations[:total], total=total, file=sys.stdout):
        img = ann.split()[0]

        #		image = cv2.imread(train_params['path_dataset'] + img)
        #		image = Image.fromarray(image)
        images = [
            Image.open(train_params['path_dataset'] + img)
            for img in img.split(',')
        ]
        img_size = images[0].size
        #		images = images[0] if len(images) == 1 else np.stack(images)
        boxes, scores, classes = model.get_prediction(images)

        for i in range(len(boxes)):
            left, bottom, right, top = [int(b) for b in boxes[i].tolist()]
            left, bottom = max(0, left), max(0, bottom)
            right, top = min(img_size[1], right), min(img_size[0], top)
            width = top - bottom
            height = right - left
            preds.append({
                'image_id': img[:-4],
                'category_id': int(classes[i]),
                #							'bbox': [ x_min, y_min, width, height ],
                'bbox': [bottom, left, width, height],
                'score': float(scores[i]),
            })

    fps = len(annotations) / (time.time() - t)
    json.dump(preds, open(preds_filename, 'w'))

    return model, fps
Exemplo n.º 4
0
            logging,
            checkpoint,
            reduce_lr_2,
            #					   reduce_lr
            early_stopping
        ])
    model.save_weights(path_model + 'weights/trained_weights_final.h5')
print('=' * print_line)

## %%

train_utils.remove_worst_weights(path_model)

## %%

best_weights = train_utils.get_best_weights(path_model)
model.load_weights(best_weights)

# %%

log('EVALUATING')

model_num = int(path_model.split('/')[-2].split('_')[-1])
#dataset_name, path_results = 'kitchen', '/mnt/hdd/egocentric_results/'
#evaluate_model.main(path_results, dataset_name, model_num, score, iou, num_annotation_file, plot=True, full=True)

iou = 0.5
if dataset_name == 'kitchen':
    annotation_files = [(0.005, 1), (0.005, 0)]
else:
    annotation_files = [(0, 1), (evaluate_model.MIN_SCORE, 0)]
def predict_and_store_from_annotations(model_folder,
                                       train_params,
                                       annotations_file,
                                       output_dir,
                                       image_size,
                                       score,
                                       nms_iou,
                                       best_weights=True,
                                       raw_eval='def',
                                       load=False,
                                       model_path=None):

    if raw_eval == 'raw_scores':
        preds_filename = '{}preds_{}_{}_is{}_score{}_raw_score.json'.format(
            output_dir, 'bw' if best_weights else 'stage2',
            annotations_file.split('/')[-1][:-4], image_size[0], score,
            nms_iou)
    elif raw_eval == 'raw':
        preds_filename = '{}preds_{}_{}_is{}_score{}_raw.json'.format(
            output_dir, 'bw' if best_weights else 'stage2',
            annotations_file.split('/')[-1][:-4], image_size[0], score)
    elif 'def':
        preds_filename = '{}preds_{}_{}_is{}_score{}_iou{}.json'.format(
            output_dir, 'bw' if best_weights else 'stage2',
            annotations_file.split('/')[-1][:-4], image_size[0], score,
            nms_iou)
    else:
        raise ValueError('Unrecognized eval error')

    if os.path.isfile(preds_filename):
        print(' * Loading:', preds_filename)
        if load: return json.load(open(preds_filename, 'r')), preds_filename
        else: return None, preds_filename

    print(' * Predicting:', preds_filename)

    if model_path is None:
        if best_weights:
            model_path = train_utils.get_best_weights(model_folder)
        else:
            model_path = model_folder + 'weights/trained_weights_final.h5'

    model = EYOLO(
        model_image_size=image_size,
        model_path=model_path,
        classes_path=train_params['path_classes'],
        anchors_path=train_params['path_anchors'],
        score=score,
        iou=nms_iou,  # 0.5
        td_len=train_params.get('td_len', None),
        mode=train_params.get('mode', None),
        spp=train_params.get('spp', False),
        raw_eval=raw_eval)

    # Create pred file
    with open(annotations_file, 'r') as f:
        annotations = f.read().splitlines()
    preds = []

    prediction_time = 0
    total = len(annotations)
    total_prediction_time = time.time()
    for ann in tqdm(annotations[:total], total=total, file=sys.stdout):
        img = ann.split()[0]

        #		image = cv2.imread(train_params['path_dataset'] + img)
        #		image = Image.fromarray(image)
        images = [
            Image.open(train_params['path_dataset'] + img)
            for img in img.split(',')
        ]
        img_size = images[0].size
        max_size = max(img_size[0], img_size[1])
        #		images = images[0] if len(images) == 1 else np.stack(images)
        t = time.time()
        boxes, scores, classes = model.get_prediction(images)
        prediction_time += time.time() - t

        for i in range(len(boxes)):
            left, bottom, right, top = [
                min(int(b), max_size) for b in boxes[i].tolist()
            ]
            left, bottom = max(0, left), max(0, bottom)
            right, top = min(img_size[1], right), min(img_size[0], top)
            width = top - bottom
            height = right - left
            preds.append({
                'image_id': '.'.join(img.split('.')[:-1]),
                'category_id': int(classes[i]),
                #							'bbox': [ x_min, y_min, width, height ],
                'bbox': [bottom, left, width, height],
                'score': float(scores[i]),
            })

    print('Total prediction time: ', time.time() - total_prediction_time)
    print('Prediction time: {} secs || {:.2f}'.format(
        prediction_time, prediction_time / len(annotations)))

    #	keras.backend.clear_session()
    model.yolo_model = None
    del model.yolo_model
    model = None
    del model

    #	fps = len(annotations)/(time.time()-t)
    json.dump(preds, open(preds_filename, 'w'))

    if load: return preds, preds_filename
    else: return None, preds_filename
Exemplo n.º 6
0
    model_num = 1
    model_folder = train_utils.get_model_path('/mnt/hdd/egocentric_results/',
                                              'kitchen', model_num)
    train_params = json.load(open(model_folder + 'train_params.json', 'r'))
    #    classes_path = './dataset_scripts/kitchen/kitchen_classes{}.txt'.format(version)
    classes_path = train_params['path_classes']
    path_base = ''
    #    anchors_path = 'base_models/yolo_anchors.txt'
    anchors_path = train_params['path_anchors']
    model_image_size = [416, 416]

else:
    raise ValueError('Model not recognized')

if model_path is None:
    model_path = train_utils.get_best_weights(model_folder)

print('Loading:', model_path)
print('=' * 80)
model = EYOLO(
    model_image_size=(img_size, img_size),
    model_path=model_path,
    anchors_path=anchors_path,
    classes_path=classes_path,
    score=0.1,
    iou=0.5,
    #                gpu_num = 2
    td_len=train_params['td_len'],
    mode=train_params['mode'],
    spp=train_params.get('spp', False))