def get_cb513():

    print('Downloading CB513 dataset...\n')

    try:
        if not (os.path.isfile(os.getcwd() + '/' + TEST_PATH)):
            #os.system(f'wget -O {TEST_PATH} {TEST_URL}')
            r = requests.get(TEST_URL, allow_redirects=True)
            open(TEST_PATH, 'wb').write(r.content)
            dir_path = os.path.dirname(os.path.realpath(TEST_PATH))
            source_path = dir_path + '/' + TEST_PATH
            destination_path = dir_path + '/' + TEST_NPY

            print('Exporting CB513 datatset...\n')
            with gzip.open(TEST_PATH, 'rb') as f_in:
                with open(TEST_NPY, 'wb') as f_out:
                    shutil.copyfile(source_path, destination_path)
        else:
            print('CB513 dataset already present...\n')

    except OSError:
        print('Error downloading and exporting testing dataset\n')
        return

    #uploading test data to GCP Storage
    blob_path = BUCKET_NAME + '/data/' + TEST_NPY
    utils.upload_file(blob_path, TEST_NPY)
def get_cullpdb_filtered():

    print('Downloading Cullpdb 6133 dataset...\n')

    try:
        print('CWD in get_cullpdb_filtered - {}'.format(os.getcwd()))
        if not (os.path.isfile(os.getcwd() + '/' + TRAIN_PATH)):
            r = requests.get(TRAIN_URL, allow_redirects=True)
            open(TRAIN_PATH, 'wb').write(r.content)
            dir_path = os.path.dirname(os.path.realpath(TRAIN_PATH))
            source_path = dir_path + '/' + TRAIN_PATH
            destination_path = dir_path + '/' + TRAIN_NPY
            print('Exporting Cullpdb 6133 datatset....')
            with gzip.open(TRAIN_PATH, 'rb') as f_in:
                with open(TRAIN_NPY, 'wb') as f_out:
                    shutil.copyfile(source_path, destination_path)
        else:
            print('Cullpdb 6133 dataset already present...\n')

    except OSError:
        print('Error downloading and exporting training dataset\n')
        return

    #uploading training data to GCP Storage
    blob_path = BUCKET_NAME + '/data/' + TRAIN_NPY
    utils.upload_file(blob_path, TRAIN_NPY)
def get_casp10():

    try:
        if not (os.path.isfile(CASP10_PATH)):
            #os.system(f'wget -O {CASP10_PATH} {CASP_10_URL}')
            #os.system('wget -O {} {}'.format(CASP10_PATH, CASP_10_URL))
            r = requests.get(CASP_10_URL, allow_redirects=True)
            open('casp10.h5', 'wb').write(r.content)
            print('CASP10 dataset downloaded\n')

        else:
            print('CASP10 dataset already exists\n')

    except OSError:
        print('Error downloading and exporting CASP10 dataset\n')

    #uploading test data to GCP Storage
    blob_path = BUCKET_NAME + '/data/' + CASP10_PATH
    utils.upload_file(blob_path, CASP10_PATH)
Exemplo n.º 4
0
def plot_protein_labels(pred_labels, calling_test_dataset):
    """
    Description:
        Plotting and visualising the distribution of the protein structure class labels
        after evaluation on the test datasets.
    Args:
        pred_labels (np.array): array of the predicted class labels from the test datasets
        calling_test_dataset (str): name of the test dataset calling function, used for labelling plots
    Returns:
        None
    """
    #plots_path ERROR

    protein_labels_filename = 'protein_labels_' + calling_test_dataset + '.png'
    print('Plots path', plots_path)
    print('Protein labels filename', protein_labels_filename)
    print('Lable new filepath : ',
          os.path.join(plots_path, protein_labels_filename))

    #converting the array of predicted labels and the values into Pandas Series
    protein_series = pd.Series([
        pred_labels[5], pred_labels[2], pred_labels[0], pred_labels[7],
        pred_labels[6], pred_labels[3], pred_labels[1], pred_labels[4]
    ], ['H', 'E', 'L', 'T', 'S', 'G', 'B', 'I'])

    #colours for each label
    plot_colors = ['r', 'g', 'b', 'k', 'y', 'm', 'c', 'magenta']

    #plot horizontal barplot
    ax = protein_series.plot(kind='barh', color=plot_colors)
    plt.title('Protein Structure Labels after evaluation on ' +
              calling_test_dataset,
              fontsize=17)
    plt.xlabel('Label Proportion', fontsize=15)
    plt.ylabel('Protein Label', fontsize=15)
    plt.grid()
    plt.savefig(protein_labels_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'protein_labels.png')
    utils.upload_file(blob_path, protein_labels_filename)
Exemplo n.º 5
0
def plot_kde(history, filter_outliers):
    """
    Description:
        Plotting and visualising metrics using kernel density estimates from
        the model history trained on the training and validation datasets.
        Plotting following metrics: accuracy, loss, MSE, MAE, recall and precsion.
    Args:
        history (dict): dictionary containing training history of keras model with all captured metrics
        save (bool): save visualisation in model folder, default: True
        filter_outliers (bool): filter out outliers of metric arrays before plotting
    Returns:
        None

    """

    #Accuracy KDE
    plt.figure(figsize=(10, 8), dpi=200)
    sns.kdeplot(history_accuracy_array,
                shade=True,
                color="b",
                label="accuracy",
                alpha=.5)
    sns.kdeplot(history_val_accuracy_array,
                shade=True,
                color="g",
                label="val_accuracy",
                alpha=.5)
    plt.title('KDE Plot for Training/Validation Accuracy', fontsize=20)
    plt.legend(['train_acc', 'val_acc'], loc='upper right')
    plt.xlabel("Loss", fontsize=15)
    plt.ylabel("Kernel Density Estimate", fontsize=15)
    plt.grid()
    plt.savefig(accuracy_kde_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'accuracy_kde.png')
    utils.upload_file(blob_path, accuracy_kde_filename)

    #Loss KDE
    plt.figure(figsize=(10, 8), dpi=200)
    sns.kdeplot(history_loss_array,
                shade=True,
                color="b",
                label="loss",
                alpha=.5)
    sns.kdeplot(history_val_loss_array,
                shade=True,
                color="g",
                label="val_loss",
                alpha=.5)
    plt.title('KDE Plot for Training/Validation Loss', fontsize=20)
    plt.legend(['train_loss', 'val_loss'], loc='upper right')
    plt.xlabel("Loss", fontsize=15)
    plt.ylabel("Kernel Density Estimate", fontsize=15)
    plt.savefig(loss_kde_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'loss_kde.png')
    utils.upload_file(blob_path, loss_kde_filename)

    #Mean Absolute Error KDE
    plt.figure(figsize=(10, 8), dpi=200)
    sns.kdeplot(history_mae_array,
                shade=True,
                color="b",
                label="loss",
                alpha=.5)
    sns.kdeplot(history_val_mae_array,
                shade=True,
                color="g",
                label="val_loss",
                alpha=.5)
    plt.title('KDE Plot for Training/Validation Mean Absolute Error',
              fontsize=17)
    plt.legend(['train_mae', 'val_mae'], loc='upper right')
    plt.xlabel("Mean Absolute Error", fontsize=15)
    plt.ylabel("Kernel Density Estimate", fontsize=15)
    plt.grid()
    plt.savefig(mae_kde_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'mae_kde.png')
    utils.upload_file(blob_path, mae_kde_filename)

    #Mean Squared Error KDE
    plt.figure(figsize=(10, 8), dpi=200)
    sns.kdeplot(history_mse_array,
                shade=True,
                color="b",
                label="loss",
                alpha=.5)
    sns.kdeplot(history_val_mse_array,
                shade=True,
                color="g",
                label="val_loss",
                alpha=.5)
    plt.title('KDE Plot for Training/Validation Mean Squared Error',
              fontsize=17)
    plt.legend(['train_mse', 'train_mse'], loc='upper right')
    plt.xlabel("Mean Squared Error", fontsize=15)
    plt.ylabel("Kernel Density Estimate", fontsize=15)
    plt.grid()
    plt.savefig(mse_kde_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'mse_kde.png')
    utils.upload_file(blob_path, mse_kde_filename)
Exemplo n.º 6
0
def plot_histograms(history, filter_outliers):
    """
    Description:
        Plotting and visualising metrics using histograms from the model history
        trained on the training and validation datasets. Plotting following
        metrics: accuracy, loss, MSE, MAE, recall and precsion.
    Args:
        history (dict): dictionary containing training history of keras model with all captured metrics
        save (bool): save visualisation in model folder, default: True
        filter_outliers (bool): filter out outliers of metric arrays before plotting
    Returns:
        None
    """

    #filter accuracy histograms for outliers
    if filter_outliers:
        filtered = history_accuracy_array[~is_outlier(history_accuracy_array)]
        val_filtered = history_val_accuracy_array[
            ~is_outlier(history_val_accuracy_array)]
    else:
        filtered = history_accuracy_array
        val_filtered = history_val_accuracy_array

    #Training and validation accuracy histograms
    plt.figure(figsize=[10, 8])
    plt.hist(history_accuracy_array,
             facecolor='peru',
             edgecolor='blue',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.hist(history_val_accuracy_array,
             facecolor='orangered',
             edgecolor='maroon',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.xlabel('Accuracy', fontsize=15)
    plt.ylabel('Frequency', fontsize=15)
    plt.title('Histogram of Accuracy & Validation Accuracy', fontsize=20)
    plt.legend(['train_acc', 'val_acc'], loc='upper left')
    plt.axvline(history_accuracy_array.mean(),
                color='peru',
                linestyle='dashed',
                linewidth=2)
    plt.axvline(history_val_accuracy_array.mean(),
                color='orangered',
                linestyle='dashed',
                linewidth=2)
    plt.grid()
    plt.savefig(accuracy_hist_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'accuracy_hist.png')
    utils.upload_file(blob_path, accuracy_hist_filename)

    #filter loss histograms for outliers
    if filter_outliers:
        filtered = history_loss_array[~is_outlier(history_loss_array)]
        val_filtered = history_val_loss_array[
            ~is_outlier(history_val_loss_array)]
    else:
        filtered = history_loss_array
        val_filtered = history_val_loss_array

    #Training and validation loss histograms
    plt.figure(figsize=[10, 8])
    plt.hist(history_loss_array,
             facecolor='peru',
             edgecolor='blue',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.hist(history_val_loss_array,
             facecolor='orangered',
             edgecolor='maroon',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.xlabel('Loss', fontsize=15)
    plt.ylabel('Frequency', fontsize=15)
    plt.title('Histogram of Loss & Validation Loss', fontsize=20)
    plt.legend(['train_loss', 'train_loss'], loc='upper left')
    plt.axvline(history_loss_array.mean(),
                color='peru',
                linestyle='dashed',
                linewidth=2)
    plt.axvline(history_val_loss_array.mean(),
                color='orangered',
                linestyle='dashed',
                linewidth=2)
    plt.grid()
    plt.savefig(loss_hist_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'loss_hist.png')
    utils.upload_file(blob_path, loss_hist_filename)

    #filter MAE histograms for outliers
    if filter_outliers:
        filtered = history_mae_array[~is_outlier(history_mae_array)]
        val_filtered = history_val_mae_array[~is_outlier(history_val_mae_array
                                                         )]
    else:
        filtered = history_mae_array
        val_filtered = history_val_mae_array

    #Training and validation Mean Absolute Error histograms
    plt.figure(figsize=[10, 8])
    plt.hist(history_mae_array,
             facecolor='peru',
             edgecolor='blue',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.hist(history_val_mae_array,
             facecolor='orangered',
             edgecolor='maroon',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.xlabel('Mean Absolute Error', fontsize=15)
    plt.ylabel('Frequency', fontsize=15)
    plt.title('Histogram of Training & Validation MAE', fontsize=20)
    plt.legend(['train_mae', 'val_mae'], loc='upper left')
    plt.axvline(history_mae_array.mean(),
                color='peru',
                linestyle='dashed',
                linewidth=2)
    plt.axvline(history_val_mae_array.mean(),
                color='orangered',
                linestyle='dashed',
                linewidth=2)
    plt.grid()
    plt.savefig(mae_hist_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'mae_hist.png')
    utils.upload_file(blob_path, mae_hist_filename)

    #filter MSE histograms for outliers
    if filter_outliers:
        filtered = history_mse_array[~is_outlier(history_mse_array)]
        val_filtered = history_val_mse_array[~is_outlier(history_val_mse_array
                                                         )]
    else:
        filtered = history_mse_array
        val_filtered = history_val_mse_array

    #Training and validation Mean Squared Error histograms
    plt.figure(figsize=[10, 8])
    plt.hist(history_mse_array,
             facecolor='peru',
             edgecolor='blue',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.hist(history_val_mse_array,
             facecolor='orangered',
             edgecolor='maroon',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.xlabel('Mean Squared Error', fontsize=15)
    plt.ylabel('Frequency', fontsize=15)
    plt.title('Histogram of Training & Validation MSE', fontsize=20)
    plt.legend(['train_mse', 'val_mse'], loc='upper left')
    plt.axvline(history_mse_array.mean(),
                color='peru',
                linestyle='dashed',
                linewidth=2)
    plt.axvline(history_val_mse_array.mean(),
                color='orangered',
                linestyle='dashed',
                linewidth=2)
    plt.grid()
    plt.savefig(mse_hist_filename, dpi=200)
    plt.close()

    blob_path = os.path.join(plots_path, 'mse_hist.png')
    utils.upload_file(blob_path, mse_hist_filename)
Exemplo n.º 7
0
def plot_history(history,
                 job_name,
                 show_histograms=False,
                 show_boxplots=False,
                 show_kde=False,
                 filter_outliers=True):
    """
    Description:
        Plotting and visualising basic figure plots from the model history
        trained on the training and validation datasets. Plotting following
        metrics: accuracy, loss, MSE, MAE, recall and precsion.
    Args:
        history (dict): dictionary containing training history of keras model with all captured metrics
        model_folder_path (str): path to model folder used to save plots and models to
        show_histograms (bool): visualise results via histograms, default: False.
        show_boxplots (bool): visualise results via boxplots, default: False.
        show_kde (bool): visualise results via kernel density plots, default: False.
        filter_outliers (bool): if True, use is_outlier() function to filter outliers from arrays, default: True
        save (bool): save visualisation in model folder, default: True
    Returns:
        None

    """

    #initialise all global variables used in plotting
    initialise_vars(history, job_name)

    #plot train and validation accuracy on history
    plt.figure()
    plt.plot(history_accuracy_array)
    plt.plot(history_val_accuracy_array)
    plt.title('Model Accuracy')
    plt.ylabel('Accuracy')
    plt.xlabel('Epoch')
    plt.legend(['train_accuracy', 'val_accuracy'], loc='upper left')
    plt.grid()
    plt.savefig(accuracy_fig_filename, dpi=200)
    plt.close()

    #plot train and validation loss & accuracy on history
    plt.figure()
    plt.plot(history_accuracy_array)
    plt.plot(history_val_accuracy_array)
    plt.plot(history_loss_array)
    plt.plot(history_val_loss_array)
    plt.title('Model Loss & Accuracy')
    plt.ylabel('Loss & Accuracy')
    plt.xlabel('Epoch')
    plt.legend(['train_accuracy', 'val_accuracy', 'train_loss', 'val_loss'],
               loc='upper left')
    plt.grid()
    plt.savefig(accuracy_loss_fig_filename, dpi=200)
    plt.close()

    #plot train and validation loss on history
    plt.figure()
    plt.plot(history_loss_array)
    plt.plot(history_val_loss_array)
    plt.title('Model Loss')
    plt.ylabel('Loss')
    plt.xlabel('Epoch')
    plt.legend(['train_loss', 'val_loss'], loc='upper left')
    plt.grid()
    plt.savefig(loss_fig_filename, dpi=200)
    plt.close()

    #plot train and validation Mean Absolute Error
    plt.figure()
    plt.plot(history_mae_array)
    plt.plot(history_val_mae_array)
    plt.title('Model Mean Absolute Error')
    plt.ylabel('Mean Absolute Error')
    plt.xlabel('Epoch')
    plt.legend(['train_mae', 'val_mae'], loc='upper left')
    plt.grid()
    plt.savefig(mae_fig_filename, dpi=200)
    plt.close()

    #plot train and validation Mean Squared Error
    plt.figure()
    plt.plot(history_mse_array)
    plt.plot(history_val_mse_array)
    plt.title('Model Mean Squared Error')
    plt.ylabel('Mean Squared Error')
    plt.xlabel('Epoch')
    plt.legend(['train_mse', 'val_mse'], loc='upper left')
    plt.grid()
    plt.savefig(mse_fig_filename, dpi=200)
    plt.close()

    #plot train and validation Recall
    plt.figure()
    plt.plot(history_recall_array)
    plt.plot(history_val_recall_array)
    plt.title('Training & Validation Recall')
    plt.ylabel('Recall')
    plt.xlabel('Epoch')
    plt.legend(['train_recall', 'val_recall'], loc='upper left')
    plt.grid()
    plt.savefig(recall_fig_filename, dpi=200)
    plt.close()

    #plot train and validation Precision
    plt.figure()
    plt.plot(history_precision_array)
    plt.plot(history_val_precision_array)
    plt.title('Training & Validation Precision')
    plt.ylabel('Precision')
    plt.xlabel('Epoch')
    plt.legend(['train_precision', 'val_precision'], loc='upper left')
    plt.grid()
    plt.savefig(precision_fig_filename, dpi=200)
    plt.close()

    #plot train and validation Recall + Precision
    plt.figure()
    plt.plot(history_precision_array)
    plt.plot(history_val_precision_array)
    plt.plot(history_recall_array)
    plt.plot(history_val_recall_array)
    plt.title('Training and Validation Recall & Precision')
    plt.ylabel('Precision & Recall')
    plt.xlabel('Epoch')
    plt.legend(
        ['train_precision', 'val_precision', 'train_recall', 'val_recall'],
        loc='upper left')
    plt.grid()
    plt.savefig(precision_recall_fig_filename, dpi=200)
    plt.close()

    #Upload all metric figures to GCP Storage
    blob_path = os.path.join(plots_path, 'accuracy_fig.png')
    utils.upload_file(blob_path, accuracy_fig_filename)

    blob_path = os.path.join(plots_path, 'loss_fig.png')
    utils.upload_file(blob_path, loss_fig_filename)

    blob_path = os.path.join(plots_path, 'accuracy_loss_fig.png')
    utils.upload_file(blob_path, accuracy_loss_fig_filename)

    blob_path = os.path.join(plots_path, 'mae_fig.png')
    utils.upload_file(blob_path, mae_fig_filename)

    blob_path = os.path.join(plots_path, 'mse_fig.png')
    utils.upload_file(blob_path, mse_fig_filename)

    blob_path = os.path.join(plots_path, 'recall_fig.png')
    utils.upload_file(blob_path, recall_fig_filename)

    blob_path = os.path.join(plots_path, 'precision_fig.png')
    utils.upload_file(blob_path, precision_fig_filename)

    blob_path = os.path.join(plots_path, 'precision_recall_fig.png')
    utils.upload_file(blob_path, precision_recall_fig_filename)

    #Plot histograms of metrics
    if (show_histograms):
        plot_histograms(history, filter_outliers)

    #Plot boxplots of metrics
    if (show_boxplots):
        plot_boxplots(history, filter_outliers)

    #Plot KDE of metrics
    if (show_kde):
        plot_kde(history, filter_outliers)
Exemplo n.º 8
0
def plot_boxplots(history, filter_outliers):
    """
    Description:
        Plotting and visualising metrics using boxplots from the model history
        trained on the training and validation datasets. Boxplots can show the
        different quartiles, median, min & max values and any outliers. Plotting
        following metrics: accuracy, loss, MSE, MAE, recall and precsion.
    Args:
        history (dict): dictionary containing training history of keras model with all captured metrics
        save (bool): save visualisation in model folder, default: True
        filter_outliers (bool): filter out outliers of metric arrays before plotting
    Returns:
        None
    """

    #filter outliers
    if filter_outliers:
        filtered = history_accuracy_array[~is_outlier(history_accuracy_array)]
    else:
        filtered = history_accuracy_array

    #Boxplot of training accuracy
    plt.figure(figsize=[10, 8])
    plt.boxplot(filtered, patch_artist=False)
    plt.xticks([1], ["Accuracy"], fontsize=15)
    plt.title('Boxplot of training accuracy', fontsize=20)
    plt.grid()
    plt.savefig(accuracy_box_filename, dpi=200)
    plt.close()

    #Upload boxplot blob
    blob_path = os.path.join(plots_path, 'accuracy_boxplot.png')
    utils.upload_file(blob_path, accuracy_box_filename)

    #filter outliers
    if filter_outliers:
        filtered = history_loss_array[~is_outlier(history_loss_array)]
    else:
        filtered = history_loss_array

    #Boxplot of training loss
    plt.figure(figsize=[10, 8])
    plt.boxplot(filtered, patch_artist=False)
    plt.xticks([1], ["Loss"], fontsize=15)
    plt.title('Boxplot of training loss', fontsize=20)
    plt.grid()
    plt.savefig(loss_box_filename, dpi=200)
    plt.close()

    #Upload boxplot blob
    blob_path = os.path.join(plots_path, 'loss_boxplot.png')
    utils.upload_file(blob_path, loss_box_filename)

    #filter outliers
    if filter_outliers:
        filtered = history_mse_array[~is_outlier(history_mse_array)]
    else:
        filtered = history_mse_array

    #Boxplot of training MSE
    plt.figure(figsize=[10, 8])
    plt.boxplot(filtered, patch_artist=False)
    plt.xticks([1], ["Mean Squared Error"], fontsize=15)
    plt.title('Boxplot of training mean squared error', fontsize=20)
    plt.grid()
    plt.savefig(mse_box_filename, dpi=200)
    plt.close()

    #Upload boxplot blob
    blob_path = os.path.join(plots_path, 'mse_boxplot.png')
    utils.upload_file(blob_path, mse_box_filename)

    #filter outliers
    if filter_outliers:
        filtered = history_mae_array[~is_outlier(history_mae_array)]
    else:
        filtered = history_mae_array

    #Boxplot of training MAE
    plt.figure(figsize=[10, 8])
    plt.boxplot(filtered, patch_artist=False)
    plt.xticks([1], ["Mean Absolute Error"], fontsize=15)
    plt.title('Boxplot of training mean absolute error', fontsize=20)
    plt.grid()
    plt.savefig(mae_box_filename, dpi=200)
    plt.close()

    #Upload boxplot blob
    blob_path = os.path.join(plots_path, 'mae_boxplot.png')
    utils.upload_file(blob_path, mae_box_filename)
def plot_kde(history):

    #initialise KDE figure names
    accuracy_kde_filename = 'accuracy_kde_'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    loss_kde_filename = 'loss_kde_'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    mae_kde_filename = 'mae_kde_'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    mse_kde_filename = 'mse_kde_'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'

    #Accuracy KDE
    plt.figure(figsize=(10, 8), dpi=200)
    sns.kdeplot(history_accuracy_array,
                shade=True,
                color="b",
                label="accuracy",
                alpha=.5)
    sns.kdeplot(history_val_accuracy_array,
                shade=True,
                color="g",
                label="val_accuracy",
                alpha=.5)
    plt.title('KDE Plot for Training/Validation Accuracy', fontsize=20)
    plt.xlabel("Loss", fontsize=15)
    plt.ylabel("Kernel Density Estimate", fontsize=15)
    plt.savefig(accuracy_kde_filename, dpi=200)
    plt.show()
    plt.close()

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/accuracy_kde_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, accuracy_kde_filename)

    #Loss KDE
    plt.figure(figsize=(10, 8), dpi=200)
    sns.kdeplot(history_loss_array,
                shade=True,
                color="b",
                label="loss",
                alpha=.5)
    sns.kdeplot(history_val_loss_array,
                shade=True,
                color="g",
                label="val_loss",
                alpha=.5)
    plt.title('KDE Plot for Training/Validation Loss', fontsize=20)
    plt.xlabel("Loss", fontsize=15)
    plt.ylabel("Kernel Density Estimate", fontsize=15)
    plt.savefig(loss_kde_filename, dpi=200)
    plt.show()
    plt.close()

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/loss_kde_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, loss_kde_filename)

    #Mean Absolute Error KDE
    plt.figure(figsize=(10, 8), dpi=200)
    sns.kdeplot(history_mae_array,
                shade=True,
                color="b",
                label="loss",
                alpha=.5)
    sns.kdeplot(history_val_mae_array,
                shade=True,
                color="g",
                label="val_loss",
                alpha=.5)
    plt.title('KDE Plot for Training/Validation Mean Absolute Error',
              fontsize=17)
    plt.xlabel("Mean Absolute Error", fontsize=15)
    plt.ylabel("Kernel Density Estimate", fontsize=15)
    plt.savefig(mae_kde_filename, dpi=200)
    plt.show()
    plt.close()

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/mae_kde_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, mae_kde_filename)

    #Mean Squared Error KDE
    plt.figure(figsize=(10, 8), dpi=200)
    sns.kdeplot(history_mse_array,
                shade=True,
                color="b",
                label="loss",
                alpha=.5)
    sns.kdeplot(history_val_mse_array,
                shade=True,
                color="g",
                label="val_loss",
                alpha=.5)
    plt.title('KDE Plot for Training/Validation Mean Squared Error',
              fontsize=17)
    plt.xlabel("Mean Squared Error", fontsize=15)
    plt.ylabel("Kernel Density Estimate", fontsize=15)
    plt.savefig(mse_kde_filename, dpi=200)
    plt.show()
    plt.close()

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/mse_kde_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, mse_kde_filename)
def plot_histograms(history):

    #initialise histogram figure names
    accuracy_hist_filename = 'accuracy_hist'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    loss_hist_filename = 'loss_hist'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    mae_hist_filename = 'mae_hist'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    mse_hist_filename = 'mse_hist'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'

    #filter accuracy histograms for outliers
    filtered = history_accuracy_array[~is_outlier(history_accuracy_array)]
    val_filtered = history_val_accuracy_array[
        ~is_outlier(history_val_accuracy_array)]

    #Add stddev
    #Training and validation accuracy histograms
    plt.figure(figsize=[10, 8])
    plt.hist(history_accuracy_array,
             facecolor='peru',
             edgecolor='blue',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.hist(history_val_accuracy_array,
             facecolor='orangered',
             edgecolor='maroon',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.xlabel('Accuracy', fontsize=15)
    plt.ylabel('Frequency', fontsize=15)
    accuracy_mean = "Train Accuracy Mean = {:.3f} \n Val Accuracy Mean = {:.3f}".format(
        history_accuracy_array.mean(), history_val_accuracy_array.mean())
    plt.text(0.7,
             0.9,
             accuracy_mean,
             transform=plt.gca().transAxes,
             fontweight='bold')
    plt.title('Histogram of Accuracy & Validation Accuracy', fontsize=20)
    plt.legend(['accuracy', 'val_accuracy'], loc='upper left')
    plt.axvline(history_accuracy_array.mean(),
                color='peru',
                linestyle='dashed',
                linewidth=2)
    plt.axvline(history_val_accuracy_array.mean(),
                color='orangered',
                linestyle='dashed',
                linewidth=2)
    plt.savefig(accuracy_hist_filename, dpi=200)
    plt.show()
    plt.close()

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/accuracy_hist_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, accuracy_hist_filename)

    #filter loss histograms for outliers
    filtered = history_loss_array[~is_outlier(history_loss_array)]
    val_filtered = history_val_loss_array[~is_outlier(history_val_loss_array)]

    #Training and validation loss histograms
    plt.figure(figsize=[10, 8])
    plt.hist(history_loss_array,
             facecolor='peru',
             edgecolor='blue',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.hist(history_val_loss_array,
             facecolor='orangered',
             edgecolor='maroon',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.xlabel('Loss', fontsize=15)
    plt.ylabel('Frequency', fontsize=15)
    loss_mean = "Train Loss Mean = {:.3f} \n Val Loss Mean = {:.3f}".format(
        history_loss_array.mean(), history_val_loss_array.mean())
    plt.text(0.75,
             0.9,
             loss_mean,
             transform=plt.gca().transAxes,
             fontweight='bold')
    plt.title('Histogram of Loss & Validation Loss', fontsize=20)
    plt.legend(['loss', 'val_loss'], loc='upper left')
    plt.axvline(history_loss_array.mean(),
                color='peru',
                linestyle='dashed',
                linewidth=2)
    plt.axvline(history_val_loss_array.mean(),
                color='orangered',
                linestyle='dashed',
                linewidth=2)
    plt.savefig(loss_hist_filename, dpi=200)
    plt.show()
    plt.close()

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/loss_hist_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, loss_hist_filename)

    #filter MAE histograms for outliers
    filtered = history_mae_array[~is_outlier(history_mae_array)]
    val_filtered = history_val_mae_array[~is_outlier(history_val_mae_array)]

    #Training and validation Mean Absolute Error histograms
    plt.figure(figsize=[10, 8])
    plt.hist(history_mae_array,
             facecolor='peru',
             edgecolor='blue',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.hist(history_val_mae_array,
             facecolor='orangered',
             edgecolor='maroon',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.xlabel('Mean Absolute Error', fontsize=15)
    plt.ylabel('Frequency', fontsize=15)
    mae_mean = "Train MAE Mean = {:.3f} \n Val MAE Mean = {:.3f}".format(
        history_mae_array.mean(), history_val_mae_array.mean())
    plt.text(0.75,
             0.9,
             mae_mean,
             transform=plt.gca().transAxes,
             fontweight='bold')
    plt.title('Histogram of Training & Validation MAE', fontsize=20)
    plt.legend(['mae', 'val_mae'], loc='upper left')
    plt.axvline(history_mae_array.mean(),
                color='peru',
                linestyle='dashed',
                linewidth=2)
    plt.axvline(history_val_mae_array.mean(),
                color='orangered',
                linestyle='dashed',
                linewidth=2)
    plt.savefig(mae_hist_filename, dpi=200)
    plt.show()
    plt.close()

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/mae_hist_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, mae_hist_filename)

    #filter MSE histograms for outliers
    filtered = history_mse_array[~is_outlier(history_mse_array)]
    val_filtered = history_val_mse_array[~is_outlier(history_val_mse_array)]

    #Training and validation Mean Squared Error histograms
    plt.figure(figsize=[10, 8])
    plt.hist(history_mse_array,
             facecolor='peru',
             edgecolor='blue',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.hist(history_val_mse_array,
             facecolor='orangered',
             edgecolor='maroon',
             bins=10,
             alpha=0.5,
             orientation="vertical")
    plt.xlabel('Mean Squared Error', fontsize=15)
    plt.ylabel('Frequency', fontsize=15)
    mse_mean = "Train MSE Mean = {:.3f} \n Val MSE Mean = {:.3f}".format(
        history_mse_array.mean(), history_val_mse_array.mean())
    plt.text(0.75,
             0.9,
             mse_mean,
             transform=plt.gca().transAxes,
             fontweight='bold')
    plt.title('Histogram of Training & Validation MSE', fontsize=20)
    plt.legend(['mse', 'val_mse'], loc='upper left')
    plt.axvline(history_mse_array.mean(),
                color='peru',
                linestyle='dashed',
                linewidth=2)
    plt.axvline(history_val_mse_array.mean(),
                color='orangered',
                linestyle='dashed',
                linewidth=2)
    plt.savefig(mse_hist_filename, dpi=200)
    plt.show()
    plt.close()

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/mse_hist_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, mse_hist_filename)
def plot_history(history,
                 model_folder_path,
                 show_histograms=False,
                 show_boxplots=False,
                 show_kde=False):

    #initialise all global variables used in plotting
    initialise_vars(history, model_folder_path)

    # history = history_filepath

    # f = BytesIO(file_io.read_file_to_string('gs://keras-python-models/cullpdb+profile_6133_filtered.npy', binary_mode=True))

    #initialise figure filenames
    accuracy_fig_filename = 'accuracy_fig'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    loss_fig_filename = 'loss_fig'+ str(datetime.date(datetime.now()))+ \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    mae_fig_filename = 'mae _fig'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    mse_fig_filename = 'mse_fig'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M')))+ '.png'
    recall_fig_filename = 'recall_fig'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    precision_fig_filename = 'precision_fig'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M')))+ '.png'

    #plot train and validation accuracy on history
    plt.figure()
    plt.plot(history_accuracy_array)
    plt.plot(history_val_accuracy_array)
    plt.title('Model Accuracy')
    plt.ylabel('Accuracy')
    plt.xlabel('epoch')
    plt.legend(['trainaccuracy', 'valaccuracy'], loc='upper left')
    plt.savefig(accuracy_fig_filename, dpi=200)
    plt.show()
    plt.close()

    #plot train and validation loss on history
    plt.figure()
    plt.plot(history_loss_array)
    plt.plot(history_val_loss_array)
    plt.title('Model Loss')
    plt.ylabel('Loss')
    plt.xlabel('Epoch')
    plt.legend(['trainloss', 'valloss'], loc='upper left')
    plt.savefig(loss_fig_filename, dpi=200)
    plt.show()
    plt.close()

    #plot train and validation Mean Absolute Error
    plt.figure()
    plt.plot(history_mae_array)
    plt.plot(history_val_mae_array)
    plt.title('Model Mean Absolute Error')
    plt.ylabel('Mean Absolute Error')
    plt.xlabel('Epoch')
    plt.legend(['train_mae', 'val_mae'], loc='upper left')
    plt.savefig(mae_fig_filename, dpi=200)
    plt.show()
    plt.close()

    #plot train and validation Mean Squared Error
    plt.figure()
    plt.plot(history_mse_array)
    plt.plot(history_val_mse_array)
    plt.title('Model Mean Squared Error')
    plt.ylabel('Mean Squared Error')
    plt.xlabel('Epoch')
    plt.legend(['train_mse', 'val_mse'], loc='upper left')
    plt.savefig(mse_fig_filename, dpi=200)
    plt.show()
    plt.close()

    #plot train and validation Recall
    plt.figure()
    plt.plot(history_recall_array)
    plt.plot(history_val_recall_array)
    plt.title('Training & Validation Recall')
    plt.ylabel('Recall')
    plt.xlabel('Epoch')
    plt.legend(['train_recall', 'val_recall'], loc='upper left')
    plt.savefig(recall_fig_filename, dpi=200)
    plt.show()
    plt.close()

    #plot train and validation Precision
    plt.figure()
    plt.plot(history_precision_array)
    plt.plot(history_val_precision_array)
    plt.title('Training & Validation Precision')
    plt.ylabel('Precision')
    plt.xlabel('Epoch')
    plt.legend(['train_precision', 'val_precision'], loc='upper left')
    plt.savefig(precision_fig_filename, dpi=200)
    plt.show()
    plt.close()

    #Upload all metric figures to GCP Storage
    blob_path = plots_path + str(datetime.date(datetime.now())) + '/accuracy_fig_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    # blob_path = 'plots/plots_' + str(datetime.date(datetime.now())) + '/accuracy_fig_'+ \
    #     str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, accuracy_fig_filename)

    # blob_path = 'plots/plots_' + str(datetime.date(datetime.now())) + '/loss_fig_'+ \
    #     str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    blob_path = plots_path + str(datetime.date(datetime.now())) + '/loss_fig'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, loss_fig_filename)

    # blob_path = 'plots/plots_' + str(datetime.date(datetime.now())) + '/mae_fig_'+ \
    #     str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    blob_path = plots_path + str(datetime.date(datetime.now())) + '/mae_fig_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, mae_fig_filename)

    # blob_path = 'plots/plots_' + str(datetime.date(datetime.now())) + '/mse_fig_'+ \
    #     str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    blob_path = plots_path + str(datetime.date(datetime.now())) + '/mse_fig'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, mse_fig_filename)

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/recall_fig'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, recall_fig_filename)

    blob_path = plots_path + str(datetime.date(datetime.now())) + '/precision_fig'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, precision_fig_filename)

    #Plot histograms of metrics
    if (show_histograms):
        plot_histograms(history)

    #Plot boxplots of metrics
    if (show_boxplots):
        plot_boxplots(history)

    #Plot KDE of metrics
    if (show_kde):
        plot_kde(history)
def plot_boxplots(history):

    #initialise filenames for boxplots
    accuracy_box_filename = 'accuracy_boxplot_'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    loss_box_filename = 'loss_boxplot_'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    mae_box_filename = 'mae_boxplot_'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'
    mse_box_filename = 'mse_boxplot_'+ str(datetime.date(datetime.now())) + \
        '_' + str((datetime.now().strftime('%H:%M'))) + '.png'

    #filter outliers
    filtered = history_accuracy_array[~is_outlier(history_accuracy_array)]

    #Boxplot of training accuracy
    plt.figure(figsize=[10, 8])
    plt.boxplot(filtered, patch_artist=False)
    plt.xticks([1], ["Accuracy"], fontsize=15)
    plt.title('Boxplot of training accuracy', fontsize=20)
    plt.savefig(accuracy_box_filename, dpi=200)
    plt.show()
    plt.close()

    #Upload boxplot blob
    blob_path = plots_path + str(datetime.date(datetime.now())) + '/accuracy_boxplot_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, accuracy_box_filename)

    #filter outliers
    filtered = history_loss_array[~is_outlier(history_loss_array)]

    #Boxplot of training loss
    plt.figure(figsize=[10, 8])
    plt.boxplot(filtered, patch_artist=False)
    plt.xticks([1], ["Loss"], fontsize=15)
    plt.title('Boxplot of training loss', fontsize=20)
    plt.savefig(loss_box_filename, dpi=200)
    plt.show()
    plt.close()

    #Upload boxplot blob
    blob_path = plots_path + str(datetime.date(datetime.now())) + '/loss_boxplot_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, loss_box_filename)

    #filter outliers
    filtered = history_mse_array[~is_outlier(history_mse_array)]

    #Boxplot of training MSE
    plt.figure(figsize=[10, 8])
    plt.boxplot(filtered, patch_artist=False)
    plt.xticks([1], ["Mean Squared Error"], fontsize=15)
    plt.title('Boxplot of training mean squared error', fontsize=20)
    plt.savefig(mse_box_filename, dpi=200)
    plt.show()
    plt.close()

    #Upload boxplot blob
    blob_path = plots_path + str(datetime.date(datetime.now())) + '/mse_boxplot_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, mse_box_filename)

    #filter outliers
    filtered = history_mae_array[~is_outlier(history_mae_array)]

    #Boxplot of training MAE
    plt.figure(figsize=[10, 8])
    plt.boxplot(filtered, patch_artist=False)
    plt.xticks([1], ["Mean Absolute Error"], fontsize=15)
    plt.title('Boxplot of training mean absolute error', fontsize=20)
    plt.savefig(mae_box_filename, dpi=200)
    plt.show()
    plt.close()

    #Upload boxplot blob
    blob_path = plots_path + str(datetime.date(datetime.now())) + '/mae_boxplot_'+ \
        str(datetime.date(datetime.now())) + '_'+ str((datetime.now().strftime('%H:%M'))) + '.png'
    utils.upload_file(blob_path, mae_box_filename)