Exemplo n.º 1
0
class Runner():
    ''' Handler for complete pre-training progress of upstream models '''
    def __init__(self, args, config, dataloader, ckpdir):

        self.device = torch.device('cuda') if (
            args.gpu and torch.cuda.is_available()) else torch.device('cpu')
        if torch.cuda.is_available(): print('[Runner] - CUDA is available!')
        self.model_kept = []
        self.global_step = 1
        self.log = SummaryWriter(ckpdir)

        self.args = args
        self.config = config
        self.dataloader = dataloader
        self.ckpdir = ckpdir

        # optimizer
        self.learning_rate = float(config['optimizer']['learning_rate'])
        self.warmup_proportion = config['optimizer']['warmup_proportion']
        self.gradient_accumulation_steps = config['optimizer'][
            'gradient_accumulation_steps']
        self.gradient_clipping = config['optimizer']['gradient_clipping']

        # Training details
        self.apex = config['runner']['apex']
        self.total_steps = config['runner']['total_steps']
        self.log_step = config['runner']['log_step']
        self.save_step = config['runner']['save_step']
        self.duo_feature = config['runner']['duo_feature']
        self.max_keep = config['runner']['max_keep']

        # model
        self.transformer_config = config['transformer']
        self.input_dim = self.transformer_config['input_dim']
        self.output_dim = 1025 if self.duo_feature else None  # output dim is the same as input dim if not using duo features

    def set_model(self):
        print('[Runner] - Initializing Transformer model...')

        # build the Transformer model with speech prediction head
        model_config = TransformerConfig(self.config)
        self.dr = model_config.downsample_rate
        self.hidden_size = model_config.hidden_size

        self.model = TransformerForMaskedAcousticModel(
            model_config, self.input_dim, self.output_dim).to(self.device)
        self.model.train()

        if self.args.multi_gpu:
            self.model = torch.nn.DataParallel(self.model)
            print('[Runner] - Multi-GPU training Enabled: ' +
                  str(torch.cuda.device_count()))
        print('[Runner] - Number of parameters: ' + str(
            sum(p.numel()
                for p in self.model.parameters() if p.requires_grad)))

        # Setup optimizer
        param_optimizer = list(self.model.named_parameters())

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if self.apex:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=self.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if self.config['optimizer']['loss_scale'] == 0:
                self.optimizer = FP16_Optimizer(optimizer,
                                                dynamic_loss_scale=True)
            else:
                self.optimizer = FP16_Optimizer(
                    optimizer,
                    static_loss_scale=self.config['optimizer']['loss_scale'])
            self.warmup_linear = WarmupLinearSchedule(
                warmup=self.warmup_proportion, t_total=self.total_steps)
        else:
            self.optimizer = BertAdam(optimizer_grouped_parameters,
                                      lr=self.learning_rate,
                                      warmup=self.warmup_proportion,
                                      t_total=self.total_steps)

    def save_model(self, name='states', to_path=None):
        all_states = {
            'SpecHead':
            self.model.SpecHead.state_dict() if not self.args.multi_gpu else
            self.model.module.SpecHead.state_dict(),
            'Transformer':
            self.model.Transformer.state_dict() if not self.args.multi_gpu else
            self.model.module.Transformer.state_dict(),
            'Optimizer':
            self.optimizer.state_dict(),
            'Global_step':
            self.global_step,
            'Settings': {
                'Config': self.config,
                'Paras': self.args,
            },
        }

        if to_path is None:
            new_model_path = '{}/{}-{}.ckpt'.format(self.ckpdir, name,
                                                    self.global_step)
        else:
            new_model_path = to_path

        torch.save(all_states, new_model_path)
        self.model_kept.append(new_model_path)

        if len(self.model_kept) >= self.max_keep:
            os.remove(self.model_kept[0])
            self.model_kept.pop(0)

    def up_sample_frames(self, spec, return_first=False):
        if len(spec.shape) != 3:
            spec = spec.unsqueeze(0)
            assert (len(spec.shape) == 3
                    ), 'Input should have acoustic feature of shape BxTxD'
        # spec shape: [batch_size, sequence_length // downsample_rate, output_dim * downsample_rate]
        spec_flatten = spec.view(spec.shape[0], spec.shape[1] * self.dr,
                                 spec.shape[2] // self.dr)
        if return_first: return spec_flatten[0]
        return spec_flatten  # spec_flatten shape: [batch_size, sequence_length * downsample_rate, output_dim // downsample_rate]

    def down_sample_frames(self, spec):
        left_over = spec.shape[1] % self.dr
        if left_over != 0: spec = spec[:, :-left_over, :]
        spec_stacked = spec.view(spec.shape[0], spec.shape[1] // self.dr,
                                 spec.shape[2] * self.dr)
        return spec_stacked

    def process_data(self, spec):
        """Process training data for the masked acoustic model"""
        with torch.no_grad():

            assert (
                len(spec) == 5
            ), 'dataloader should return (spec_masked, pos_enc, mask_label, attn_mask, spec_stacked)'
            # Unpack and Hack bucket: Bucketing should cause acoustic feature to have shape 1xBxTxD'
            spec_masked = spec[0].squeeze(0)
            pos_enc = spec[1].squeeze(0)
            mask_label = spec[2].squeeze(0)
            attn_mask = spec[3].squeeze(0)
            spec_stacked = spec[4].squeeze(0)

            spec_masked = spec_masked.to(device=self.device)
            if pos_enc.dim() == 3:
                # pos_enc: (batch_size, seq_len, hidden_size)
                # GPU memory need (batch_size * seq_len * hidden_size)
                pos_enc = torch.FloatTensor(pos_enc).to(device=self.device)
            elif pos_enc.dim() == 2:
                # pos_enc: (seq_len, hidden_size)
                # GPU memory only need (seq_len * hidden_size) even after expanded
                pos_enc = torch.FloatTensor(pos_enc).to(
                    device=self.device).expand(spec_masked.size(0),
                                               *pos_enc.size())
            mask_label = torch.ByteTensor(mask_label).to(device=self.device)
            attn_mask = torch.FloatTensor(attn_mask).to(device=self.device)
            spec_stacked = spec_stacked.to(device=self.device)

        return spec_masked, pos_enc, mask_label, attn_mask, spec_stacked  # (x, pos_enc, mask_label, attention_mask. y)

    def train(self):
        ''' Self-Supervised Pre-Training of Transformer Model'''

        pbar = tqdm(total=self.total_steps)
        while self.global_step <= self.total_steps:

            progress = tqdm(self.dataloader, desc="Iteration")

            step = 0
            loss_val = 0
            for batch_is_valid, *batch in progress:
                try:
                    if self.global_step > self.total_steps: break
                    if not batch_is_valid: continue
                    step += 1

                    spec_masked, pos_enc, mask_label, attn_mask, spec_stacked = self.process_data(
                        batch)
                    loss, pred_spec = self.model(spec_masked, pos_enc,
                                                 mask_label, attn_mask,
                                                 spec_stacked)

                    # Accumulate Loss
                    if self.gradient_accumulation_steps > 1:
                        loss = loss / self.gradient_accumulation_steps
                    if self.apex and self.args.multi_gpu:
                        raise NotImplementedError
                    elif self.apex:
                        self.optimizer.backward(loss)
                    elif self.args.multi_gpu:
                        loss = loss.sum()
                        loss.backward()
                    else:
                        loss.backward()
                    loss_val += loss.item()

                    # Update
                    if (step + 1) % self.gradient_accumulation_steps == 0:
                        if self.apex:
                            # modify learning rate with special warm up BERT uses
                            # if conifg.apex is False, BertAdam is used and handles this automatically
                            lr_this_step = self.learning_rate * self.warmup_linear.get_lr(
                                self.global_step, self.warmup_proportion)
                            for param_group in self.optimizer.param_groups:
                                param_group['lr'] = lr_this_step

                        # Step
                        grad_norm = torch.nn.utils.clip_grad_norm_(
                            self.model.parameters(), self.gradient_clipping)
                        if math.isnan(grad_norm):
                            print(
                                '[Runner] - Error : grad norm is NaN @ step ' +
                                str(self.global_step))
                        else:
                            self.optimizer.step()
                        self.optimizer.zero_grad()

                        if self.global_step % self.log_step == 0:
                            # Log
                            self.log.add_scalar('lr',
                                                self.optimizer.get_lr()[0],
                                                self.global_step)
                            self.log.add_scalar('loss', (loss_val),
                                                self.global_step)
                            self.log.add_scalar('gradient norm', grad_norm,
                                                self.global_step)
                            progress.set_description("Loss %.4f" % (loss_val))

                        if self.global_step % self.save_step == 0:
                            self.save_model('states')
                            mask_spec = self.up_sample_frames(
                                spec_masked[0], return_first=True)
                            pred_spec = self.up_sample_frames(
                                pred_spec[0], return_first=True)
                            true_spec = self.up_sample_frames(
                                spec_stacked[0], return_first=True)
                            mask_spec = plot_spectrogram_to_numpy(
                                mask_spec.data.cpu().numpy())
                            pred_spec = plot_spectrogram_to_numpy(
                                pred_spec.data.cpu().numpy())
                            true_spec = plot_spectrogram_to_numpy(
                                true_spec.data.cpu().numpy())
                            self.log.add_image('mask_spec', mask_spec,
                                               self.global_step)
                            self.log.add_image('pred_spec', pred_spec,
                                               self.global_step)
                            self.log.add_image('true_spec', true_spec,
                                               self.global_step)

                        loss_val = 0
                        pbar.update(1)
                        self.global_step += 1

                except RuntimeError as e:
                    if 'CUDA out of memory' in str(e):
                        print('CUDA out of memory at step: ', self.global_step)
                        torch.cuda.empty_cache()
                        self.optimizer.zero_grad()
                    else:
                        raise

        pbar.close()
        self.log.close()
Exemplo n.º 2
0
class Solver():
    ''' Super class Solver for all kinds of tasks'''
    def __init__(self, config, paras):

        # General Settings
        self.config = config
        self.paras = paras
        self.transformer_config = config['transformer']
        self.device = torch.device('cuda') if (
            self.paras.gpu
            and torch.cuda.is_available()) else torch.device('cpu')
        if torch.cuda.is_available(): self.verbose('CUDA is available!')

        # path and directories
        self.exp_name = paras.name
        if self.exp_name is None:
            self.exp_name = '_'.join([
                paras.config.split('/')[-1].replace('.yaml', ''),
                'sd' + str(paras.seed)
            ])
        self.ckpdir = paras.ckpdir
        self.expdir = os.path.join(self.ckpdir, self.exp_name)

        self.load = paras.load
        # only for test
        self.ckpt = os.path.join(self.ckpdir, paras.ckpt)

        # model
        self.load_model_list = config['solver']['load_model_list']
        self.duo_feature = config['solver']['duo_feature']
        self.output_dim = 1025 if self.duo_feature else None  # output dim is the same as input dim if not using duo features
        if 'input_dim' in self.transformer_config:
            self.input_dim = self.transformer_config['input_dim']
        else:
            raise ValueError(
                'Please update your config file to include the attribute `input_dim`.'
            )

    def verbose(self, msg, end='\n'):
        ''' Verbose function for print information to stdout'''
        if self.paras.verbose:
            print('[SOLVER] - ', msg, end=end)

    def load_data(self, split='train'):
        ''' Load data for training / testing'''
        if split == 'train':
            self.verbose('Loading source data ' +
                         str(self.config['dataloader']['train_set']) +
                         ' from ' + self.config['dataloader']['data_path'])
            if self.duo_feature:
                self.verbose('Loading target data ' +
                             str(self.config['dataloader']['train_set']) +
                             ' from ' +
                             self.config['dataloader']['target_path'])
        elif split == 'test':
            self.verbose('Loading testing data ' +
                         str(self.config['dataloader']['test_set']) +
                         ' from ' + self.config['dataloader']['data_path'])
        else:
            raise NotImplementedError('Invalid `split` argument!')

        if self.duo_feature:
            setattr(self, 'dataloader', get_Dataloader(split, load='duo', use_gpu=self.paras.gpu, \
                    mam_config=self.transformer_config, **self.config['dataloader'])) # run_mam is automatically performed
        else:
            setattr(self, 'dataloader', get_Dataloader(split, load='acoustic', use_gpu=self.paras.gpu, run_mam=True, \
                    mam_config=self.transformer_config, **self.config['dataloader']))

    def set_model(self,
                  inference=False,
                  with_head=False,
                  from_path=None,
                  output_attention=False):
        self.verbose('Initializing Transformer model.')

        # uild the Transformer model with speech prediction head
        self.model_config = TransformerConfig(self.config)
        self.dr = self.model_config.downsample_rate
        self.hidden_size = self.model_config.hidden_size
        self.with_head = with_head
        self.output_attention = output_attention

        if not inference or with_head:
            self.model = TransformerForMaskedAcousticModel(
                self.model_config, self.input_dim, self.output_dim,
                self.output_attention).to(self.device)
            self.transformer = self.model.Transformer
            if self.paras.multi_gpu:
                self.model = torch.nn.DataParallel(self.model)
                self.transformer = torch.nn.DataParallel(self.transformer)
                self.verbose('Multi-GPU training Enabled: ' +
                             str(torch.cuda.device_count()))
            self.verbose('Number of parameters: ' + str(
                sum(p.numel()
                    for p in self.model.parameters() if p.requires_grad)))

        if inference and not with_head:
            self.transformer = TransformerModel(
                self.model_config, self.input_dim,
                self.output_attention).to(self.device)
            if self.paras.multi_gpu:
                self.transformer = torch.nn.DataParallel(self.transformer)
                self.verbose('Multi-GPU training Enabled: ' +
                             str(torch.cuda.device_count()))
            self.verbose('Number of parameters: ' + str(
                sum(p.numel() for p in self.transformer.parameters()
                    if p.requires_grad)))
            self.transformer.eval()
        elif inference and with_head:
            self.model.eval()
        elif not inference:
            self.model.train()

            # Setup optimizer
            param_optimizer = list(self.model.named_parameters())

            no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
            optimizer_grouped_parameters = [{
                'params': [
                    p for n, p in param_optimizer
                    if not any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.01
            }, {
                'params': [
                    p for n, p in param_optimizer
                    if any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.0
            }]

            if self.apex:
                try:
                    from apex.optimizers import FP16_Optimizer
                    from apex.optimizers import FusedAdam
                except ImportError:
                    raise ImportError(
                        "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                    )

                optimizer = FusedAdam(optimizer_grouped_parameters,
                                      lr=self.learning_rate,
                                      bias_correction=False,
                                      max_grad_norm=1.0)
                if self.config['optimizer']['loss_scale'] == 0:
                    self.optimizer = FP16_Optimizer(optimizer,
                                                    dynamic_loss_scale=True)
                else:
                    self.optimizer = FP16_Optimizer(
                        optimizer,
                        static_loss_scale=self.config['optimizer']
                        ['loss_scale'])
                self.warmup_linear = WarmupLinearSchedule(
                    warmup=self.warmup_proportion, t_total=self.total_steps)
            else:
                self.optimizer = BertAdam(optimizer_grouped_parameters,
                                          lr=self.learning_rate,
                                          warmup=self.warmup_proportion,
                                          t_total=self.total_steps)
        else:
            raise NotImplementedError('Invalid Arguments!')

        if self.load:  # This will be set to True by default when Tester is running set_model()
            self.load_model(inference=inference,
                            with_head=with_head,
                            from_path=from_path)

    def save_model(self, name='states', model_all=True, to_path=None):
        if model_all:
            all_states = {
                'SpecHead':
                self.model.SpecHead.state_dict() if not self.paras.multi_gpu
                else self.model.module.SpecHead.state_dict(),
                'Transformer':
                self.transformer.state_dict() if not self.paras.multi_gpu else
                self.transformer.module.state_dict(),
                'Optimizer':
                self.optimizer.state_dict(),
                'Global_step':
                self.global_step,
                'Settings': {
                    'Config': self.config,
                    'Paras': self.paras,
                },
            }
        else:
            all_states = {
                'Transformer':
                self.transformer.state_dict() if not self.paras.multi_gpu else
                self.transformer.module.state_dict(),
                'Settings': {
                    'Config': self.config,
                    'Paras': self.paras,
                },
            }
        if to_path is None:
            new_model_path = '{}/{}-{}.ckpt'.format(self.expdir, name,
                                                    self.global_step)
        else:
            new_model_path = to_path
        torch.save(all_states, new_model_path)
        self.model_kept.append(new_model_path)

        if len(self.model_kept) >= self.max_keep:
            os.remove(self.model_kept[0])
            self.model_kept.pop(0)

    def load_model(self, inference=False, with_head=False, from_path=None):
        if from_path is not None:
            self.verbose('Load model from {}'.format(from_path))
            all_states = torch.load(from_path, map_location='cpu')
            self.load_model_list = ['Transformer']
        else:
            self.verbose('Load model from {}'.format(self.ckpt))
            all_states = torch.load(self.ckpt, map_location='cpu')

        if 'SpecHead' in self.load_model_list:
            if not inference or with_head:
                try:
                    if not self.paras.multi_gpu:
                        self.model.SpecHead.load_state_dict(
                            all_states['SpecHead'])
                    else:
                        self.model.module.SpecHead.load_state_dict(
                            all_states['SpecHead'])
                    self.verbose('[SpecHead] - Loaded')
                except:
                    self.verbose('[SpecHead - X]')

        if 'Transformer' in self.load_model_list:
            try:
                state_dict = all_states['Transformer']

                # Load from a PyTorch state_dict
                old_keys = []
                new_keys = []
                for key in state_dict.keys():
                    new_key = None
                    if 'gamma' in key:
                        new_key = key.replace('gamma', 'weight')
                    if 'beta' in key:
                        new_key = key.replace('beta', 'bias')
                    if new_key:
                        old_keys.append(key)
                        new_keys.append(new_key)
                for old_key, new_key in zip(old_keys, new_keys):
                    state_dict[new_key] = state_dict.pop(old_key)

                missing_keys = []
                unexpected_keys = []
                error_msgs = []
                # copy state_dict so _load_from_state_dict can modify it
                metadata = getattr(state_dict, '_metadata', None)
                state_dict = state_dict.copy()
                if metadata is not None:
                    state_dict._metadata = metadata

                def load(module, prefix=''):
                    local_metadata = {} if metadata is None else metadata.get(
                        prefix[:-1], {})
                    module._load_from_state_dict(state_dict, prefix,
                                                 local_metadata, True,
                                                 missing_keys, unexpected_keys,
                                                 error_msgs)
                    for name, child in module._modules.items():
                        if child is not None:
                            load(child, prefix + name + '.')

                # perform load
                if not self.paras.multi_gpu:
                    load(self.transformer)
                else:
                    load(self.transformer.module)

                if len(missing_keys) > 0:
                    self.verbose(
                        "Weights of {} not initialized from pretrained model: {}"
                        .format(self.transformer.__class__.__name__,
                                missing_keys))
                if len(unexpected_keys) > 0:
                    self.verbose(
                        "Weights from pretrained model not used in {}: {}".
                        format(self.transformer.__class__.__name__,
                               unexpected_keys))
                if len(error_msgs) > 0:
                    raise RuntimeError(
                        'Error(s) in loading state_dict for {}:\n\t{}'.format(
                            self.transformer.__class__.__name__,
                            "\n\t".join(error_msgs)))
                self.verbose('[Transformer] - Loaded')
            except:
                self.verbose('[Transformer - X]')

        if 'Optimizer' in self.load_model_list and not inference:
            try:
                self.optimizer.load_state_dict(all_states['Optimizer'])
                for state in self.optimizer.state.values():
                    for k, v in state.items():
                        if torch.is_tensor(v):
                            state[k] = v.cuda()
                self.verbose('[Optimizer] - Loaded')
            except:
                self.verbose('[Optimizer - X]')

        if 'Global_step' in self.load_model_list and not inference:
            try:
                self.global_step = all_states['Global_step']
                self.verbose('[Global_step] - Loaded')
            except:
                self.verbose('[Global_step - X]')

        self.verbose('Model loading complete!')

    def up_sample_frames(self, spec, return_first=False):
        if len(spec.shape) != 3:
            spec = spec.unsqueeze(0)
            assert (len(spec.shape) == 3
                    ), 'Input should have acoustic feature of shape BxTxD'
        # spec shape: [batch_size, sequence_length // downsample_rate, output_dim * downsample_rate]
        spec_flatten = spec.view(spec.shape[0], spec.shape[1] * self.dr,
                                 spec.shape[2] // self.dr)
        if return_first: return spec_flatten[0]
        return spec_flatten  # spec_flatten shape: [batch_size, sequence_length * downsample_rate, output_dim // downsample_rate]

    def down_sample_frames(self, spec):
        left_over = spec.shape[1] % self.dr
        if left_over != 0: spec = spec[:, :-left_over, :]
        spec_stacked = spec.view(spec.shape[0], spec.shape[1] // self.dr,
                                 spec.shape[2] * self.dr)
        return spec_stacked

    def position_encoding(self, seq_len, batch_size=None, padding_idx=None):
        ''' Sinusoid position encoding table '''
        def cal_angle(position, hid_idx):
            return position / np.power(10000, 2 *
                                       (hid_idx // 2) / self.hidden_size)

        def get_posi_angle_vec(position):
            return [
                cal_angle(position, hid_j) for hid_j in range(self.hidden_size)
            ]

        sinusoid_table = np.array(
            [get_posi_angle_vec(pos_i) for pos_i in range(seq_len)])

        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

        if padding_idx is not None:
            sinusoid_table[
                padding_idx:] = 0.  # zero vector for padding dimension

        if batch_size is not None:
            batch_sinusoid_table = np.repeat(sinusoid_table[np.newaxis, ...],
                                             batch_size,
                                             axis=0)
            return batch_sinusoid_table  # (batch_size, seq_len, hidden_size)
        else:
            return sinusoid_table  # (seq_len, hidden_size)