Exemplo n.º 1
0
    def _onnx_export(self,
                     test_name,
                     name,
                     model_name,
                     feature,
                     onnx_config_class_constructor,
                     device="cpu"):
        from transformers.onnx import export

        model_class = FeaturesManager.get_model_class_for_feature(feature)
        config = AutoConfig.from_pretrained(model_name)
        model = model_class.from_config(config)

        # Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
        # See: https://github.com/ultralytics/yolov5/pull/8378
        if model.__class__.__name__.startswith("Yolos") and device != "cpu":
            return

        onnx_config = onnx_config_class_constructor(model.config)

        if is_torch_available():
            from transformers.utils import torch_version

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
                )

        preprocessor = get_preprocessor(model_name)

        # Useful for causal lm models that do not use pad tokens.
        if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(
                config, "pad_token_id", None):
            config.pad_token_id = preprocessor.eos_token_id

        with NamedTemporaryFile("w") as output:
            try:
                onnx_inputs, onnx_outputs = export(
                    preprocessor,
                    model,
                    onnx_config,
                    onnx_config.default_onnx_opset,
                    Path(output.name),
                    device=device)
                validate_model_outputs(
                    onnx_config,
                    preprocessor,
                    model,
                    Path(output.name),
                    onnx_outputs,
                    onnx_config.atol_for_validation,
                )
            except (RuntimeError, ValueError) as e:
                self.fail(f"{name}, {feature} -> {e}")
Exemplo n.º 2
0
    def _onnx_export(self,
                     test_name,
                     name,
                     model_name,
                     feature,
                     onnx_config_class_constructor,
                     device="cpu"):
        from transformers.onnx import export

        model_class = FeaturesManager.get_model_class_for_feature(feature)
        config = AutoConfig.from_pretrained(model_name)
        model = model_class.from_config(config)
        onnx_config = onnx_config_class_constructor(model.config)

        if is_torch_available():
            from transformers.utils import torch_version

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
                )

        preprocessor = get_preprocessor(model_name)

        # Useful for causal lm models that do not use pad tokens.
        if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(
                config, "pad_token_id", None):
            config.pad_token_id = preprocessor.eos_token_id

        with NamedTemporaryFile("w") as output:
            try:
                onnx_inputs, onnx_outputs = export(
                    preprocessor,
                    model,
                    onnx_config,
                    onnx_config.default_onnx_opset,
                    Path(output.name),
                    device=device)
                validate_model_outputs(
                    onnx_config,
                    preprocessor,
                    model,
                    Path(output.name),
                    onnx_outputs,
                    onnx_config.atol_for_validation,
                )
            except (RuntimeError, ValueError) as e:
                self.fail(f"{name}, {feature} -> {e}")