Exemplo n.º 1
0
 def create_and_check_xxx_for_sequence_classification(
         self, config, input_ids, token_type_ids, input_mask,
         sequence_labels, token_labels, choice_labels):
     config.num_labels = self.num_labels
     model = XxxForSequenceClassification(config)
     model.eval()
     loss, logits = model(input_ids,
                          attention_mask=input_mask,
                          token_type_ids=token_type_ids,
                          labels=sequence_labels)
     result = {
         "loss": loss,
         "logits": logits,
     }
     self.parent.assertListEqual(list(result["logits"].size()),
                                 [self.batch_size, self.num_labels])
     self.check_loss_output(result)
Exemplo n.º 2
0
 def create_and_check_for_sequence_classification(
     self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     config.num_labels = self.num_labels
     model = XxxForSequenceClassification(config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
     self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))