down_factor = args.downsample_factor
    intrinsic /= down_factor
    intrinsic[2, 2] = 1

    # Only use pose 0 for 1-th frame for alignment.
    # DO NOT use other gt poses here
    T_cam_to_world = gt_poses[0]

    T_gt = []
    T_est = []
    for i in range(args.start_idx, args.end_idx + 1):
        print('loading frame {}'.format(i))
        depth = o3d.io.read_image('{}/{}.png'.format(depth_path, i))
        depth = np.asarray(depth) / depth_scale
        depth = depth[::down_factor, ::down_factor]
        vertex_map = transforms.unproject(depth, intrinsic)

        color_map = np.asarray(o3d.io.read_image('{}/{}.png'.format(rgb_path, i))).astype(float) / 255.0
        color_map = color_map[::down_factor, ::down_factor]

        normal_map = np.load('{}/{}.npy'.format(normal_path, i))
        normal_map = normal_map[::down_factor, ::down_factor]

        if i > 1:
            print('Frame-to-model icp')
            T_world_to_cam = np.linalg.inv(T_cam_to_world)
            T_world_to_cam = icp(m.points[::down_factor],
                                 m.normals[::down_factor],
                                 vertex_map,
                                 normal_map,
                                 intrinsic,
Exemplo n.º 2
0
    intrinsic_struct = o3d.io.read_pinhole_camera_intrinsic('intrinsics.json')
    intrinsic = np.array(intrinsic_struct.intrinsic_matrix)

    depth_path = os.path.join(args.path, 'depth')
    normal_path = os.path.join(args.path, 'normal')

    # TUM convention -- uint16 value to float meters
    depth_scale = 5000.0

    # Source: load depth and rescale to meters
    source_depth = o3d.io.read_image('{}/{}.png'.format(
        depth_path, args.source_idx))
    source_depth = np.asarray(source_depth) / depth_scale

    # Unproject depth to vertex map (H, W, 3) and reshape to a point cloud (H*W, 3)
    source_vertex_map = transforms.unproject(source_depth, intrinsic)
    source_points = source_vertex_map.reshape((-1, 3))

    # Load normal map (H, W, 3) and reshape to point cloud normals (H*W, 3)
    source_normal_map = np.load('{}/{}.npy'.format(normal_path,
                                                   args.source_idx))
    source_normals = source_normal_map.reshape((-1, 3))

    # Similar preparation for target, but keep the image format for projective association
    target_depth = o3d.io.read_image('{}/{}.png'.format(
        depth_path, args.target_idx))
    target_depth = np.asarray(target_depth) / depth_scale
    target_vertex_map = transforms.unproject(target_depth, intrinsic)
    target_normal_map = np.load('{}/{}.npy'.format(normal_path,
                                                   args.target_idx))