def classifier(vocab_size=len(Vocab), embedding_dim=256, output_dim=2, mode='predict'):
        

    # create embedding layer
    embed_layer = tl.Embedding(
        vocab_size=vocab_size, # Size of the vocabulary
        d_feature=embedding_dim)  # Embedding dimension
    
    # Create a mean layer, to create an "average" word embedding
    mean_layer = tl.Mean(axis=1)
    
    # Create a dense layer, one unit for each output
    dense_output_layer = tl.Dense(n_units = output_dim)

    
    # Create the log softmax layer (no parameters needed)
    log_softmax_layer = tl.LogSoftmax()
    
    # Use tl.Serial to combine all layers
    # and create the classifier
    # of type trax.layers.combinators.Serial
    model = tl.Serial(
      embed_layer, # embedding layer
      mean_layer, # mean layer
      dense_output_layer, # dense output layer 
      log_softmax_layer # log softmax layer
    )

    # return the model of type
    return model
Exemplo n.º 2
0
def TransformerEncoder(vocab_size=vocab_size,
                       n_classes=10,
                       d_model=512,
                       d_ff=2048,
                       n_layers=6,
                       n_heads=8,
                       dropout=0.1,
                       dropout_shared_axes=None,
                       max_len=2048,
                       mode='train',
                       ff_activation=tl.Relu,
                       EncoderBlock=EncoderBlock):
    """
    Returns a Transformer encoder model.
    The input to the model is a tensor of tokens.

    Args:
        vocab_size (int): vocab size. Defaults to vocab_size.
        n_classes (int): how many classes on output. Defaults to 10.
        d_model (int): depth of embedding. Defaults to 512.
        d_ff (int): depth of feed-forward layer. Defaults to 2048.
        n_layers (int): number of encoder/decoder layers. Defaults to 6.
        n_heads (int): number of attention heads. Defaults to 8.
        dropout (float): dropout rate (how much to drop out). Defaults to 0.1.
        dropout_shared_axes (int): axes on which to share dropout mask. Defaults to None.
        max_len (int): maximum symbol length for positional encoding. Defaults to 2048.
        mode (str): 'train' or 'eval'. Defaults to 'train'.
        ff_activation (function): the non-linearity in feed-forward layer. Defaults to tl.Relu.
        EncoderBlock (function): Returns the encoder block. Defaults to EncoderBlock.

    Returns:
        trax.layers.combinators.Serial: A Transformer model as a layer that maps
        from a tensor of tokens to activations over a set of output classes.
    """

    positional_encoder = [
        tl.Embedding(vocab_size, d_model),
        tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode),
        tl.PositionalEncoding(max_len=max_len)
    ]

    # repeatation of Encoder block upto number of layers
    encoder_blocks = [
        EncoderBlock(d_model, d_ff, n_heads, dropout, dropout_shared_axes,
                     mode, ff_activation) for _ in range(n_layers)
    ]

    # Encoder Model
    return tl.Serial(
        tl.Branch(
            positional_encoder,
            tl.PaddingMask(),
        ),
        encoder_blocks,
        tl.Select([0], n_in=2),
        tl.LayerNorm(),
        tl.Mean(axis=1),
        tl.Dense(n_classes),
        tl.LogSoftmax(),
    )
Exemplo n.º 3
0
def Siamese(vocab_size=len(vocab), d_model=128, mode='train'):
    """Returns a Siamese model.

    Args:
        vocab_size (int, optional): Length of the vocabulary. Defaults to len(vocab).
        d_model (int, optional): Depth of the model. Defaults to 128.
        mode (str, optional): 'train', 'eval' or 'predict', predict mode is for fast inference. Defaults to 'train'.

    Returns:
        trax.layers.combinators.Parallel: A Siamese model. 
    """
    def normalize(x):  # normalizes the vectors to have L2 norm 1
        return x / fastnp.sqrt(fastnp.sum(x * x, axis=-1, keepdims=True))

    ### START CODE HERE (Replace instances of 'None' with your code) ###
    q_processor = tl.Serial(  # Processor will run on Q1 and Q2.
        tl.Embedding(vocab_size=vocab_size,
                     d_feature=d_model),  # Embedding layer
        tl.LSTM(n_units=d_model),  # LSTM layer
        tl.Mean(axis=1),  # Mean over columns
        tl.Fn('Normalize', lambda x: normalize(x))  # Apply normalize function
    )  # Returns one vector of shape [batch_size, d_model].

    ### END CODE HERE ###

    # Run on Q1 and Q2 in parallel.
    model = tl.Parallel(q_processor, q_processor)
    return model
Exemplo n.º 4
0
def classifier(vocab_size=1, embedding_dim=256, output_dim=2, mode='train'):
    embed_layer = tl.Embedding(vocab_size=vocab_size, d_feature=embedding_dim)
    mean_layer = tl.Mean(axis=1)
    dense_output_layer = tl.Dense(n_units=output_dim)
    log_softmax_layer = tl.LogSoftmax()
    model = tl.Serial(embed_layer, mean_layer, dense_output_layer,
                      log_softmax_layer)
    return model
Exemplo n.º 5
0
def TransformerEncoder(vocab_size,
                       n_classes=10,
                       d_model=512,
                       d_ff=2048,
                       n_layers=6,
                       n_heads=8,
                       dropout=0.1,
                       dropout_shared_axes=None,
                       max_len=2048,
                       mode='train',
                       ff_activation=tl.Relu):
    """Returns a Transformer encoder model.

  The input to the model is a tensor of tokens.

  Args:
    vocab_size: int: vocab size
    n_classes: how many classes on output
    d_model: int:  depth of embedding
    d_ff: int: depth of feed-forward layer
    n_layers: int: number of encoder/decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    dropout_shared_axes: axes on which to share dropout mask
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'
    ff_activation: the non-linearity in feed-forward layer

  Returns:
    A Transformer model as a layer that maps from a tensor of tokens to
    activations over a set of output classes.
  """
    positional_encoder = [
        tl.Embedding(vocab_size, d_model),
        tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode),
        tl.PositionalEncoding(max_len=max_len)
    ]

    encoder_blocks = [
        _EncoderBlock(d_model, d_ff, n_heads, dropout, dropout_shared_axes,
                      mode, ff_activation) for i in range(n_layers)
    ]

    # Assemble and return the model.
    return tl.Serial(  # toks
        # Encode.
        tl.Branch(positional_encoder, tl.PaddingMask()),  # vecs masks
        encoder_blocks,  # vecs masks
        tl.Select([0], n_in=2),  # vecs
        tl.LayerNorm(),  # vecs

        # Map to output categories.
        tl.Mean(axis=1),  # vecs
        tl.Dense(n_classes),  # vecs
        tl.LogSoftmax(),  # vecs
    )
def TransformerEncoder(vocab_size,
                       n_classes=10,
                       d_model=512,
                       d_ff=2048,
                       n_layers=6,
                       n_heads=8,
                       dropout=0.1,
                       max_len=2048,
                       mode='train',
                       ff_activation=tl.Relu):
    """Returns a Transformer encoder model.

  The input to the model is a tensor of tokens.

  Args:
    vocab_size: int: vocab size
    n_classes: how many classes on output
    d_model: int:  depth of embedding
    d_ff: int: depth of feed-forward layer
    n_layers: int: number of encoder/decoder layers
    n_heads: int: number of attention heads
    dropout: float: dropout rate (how much to drop out)
    max_len: int: maximum symbol length for positional encoding
    mode: str: 'train' or 'eval'
    ff_activation: the non-linearity in feed-forward layer

  Returns:
    A Transformer model as a layer that maps from a tensor of tokens to
    activations over a set of output classes.
  """
    embedder = [
        tl.Embedding(d_model, vocab_size),
        tl.Dropout(rate=dropout, name='emb_dropout', mode=mode),
        tl.PositionalEncoding(max_len=max_len),
    ]
    return tl.Serial(  #      tokens
        tl.Dup(),  # toks toks
        tl.Parallel(embedder, tl.PaddingMask()),  # vecs mask
        [
            EncoderBlock(d_model, d_ff, n_heads, dropout, i, mode,
                         ff_activation) for i in range(n_layers)
        ],  # vecs mask
        tl.Parallel([], tl.Drop()),  # ____  0
        tl.LayerNorm(),  # vecs
        tl.Mean(axis=1),  # Average on length.    # vecs
        tl.Dense(n_classes),  # vecs
        tl.LogSoftmax(),  # vecs
    )
Exemplo n.º 7
0
def siamese(vocab_size, d_model=128):
    """Returns a Siamese model.

    Args:
        vocab_size (int, optional): Length of the vocabulary. Defaults to
                                    len(vocab).
        d_model (int, optional): Depth of the model. Defaults to 128.

    Returns:
        trax.layers.combinators.Parallel: A Siamese model.
    """
    def normalize(vec):  # normalizes the vectors to have L2 norm 1
        return vec / fastnp.sqrt(fastnp.sum(vec * vec, axis=-1, keepdims=True))

    s_processor = tl.Serial(
        tl.Embedding(vocab_size, d_model),  # Embedding layer
        tl.LSTM(d_model),  # LSTM layer
        tl.Mean(axis=1),  # Mean over columns
        tl.Fn('Normalize', normalize)  # Apply normalize function
    )  # Returns one vector of shape [batch_size, d_model].

    # Run on s1_tensor and s2_tensor in parallel.
    model = tl.Parallel(s_processor, s_processor)
    return model
Exemplo n.º 8
0
def FunnelTransformerEncoder(vocab_size,
                             n_classes=10,
                             d_model=512,
                             d_ff=2048,
                             encoder_segment_lengths=(2, 2, 2),
                             n_heads=8,
                             max_len=2048,
                             dropout=0.1,
                             dropout_shared_axes=None,
                             mode='train',
                             ff_activation=tl.Relu,
                             pool_layer=tl.AvgPool,
                             pool_size=(2,),
                             strides=(2,),
                             separate_cls=True):
  """Returns a Funnel Encoder.

  This model performs text categorization:

    - input: rank 2 tensor representing a batch of text strings via token IDs
      plus padding markers; shape is (batch_size, sequence_length). The tensor
      elements are integers in `range(vocab_size)`, and `0` values mark padding
      positions.

    - output: rank 2 tensor representing a batch of log-probability
      distributions over N categories; shape is (batch_size, `n_classes`).

  Args:
    vocab_size: Input vocabulary size -- each element of the input tensor
        should be an integer in `range(vocab_size)`. These integers typically
        represent token IDs from a vocabulary-based tokenizer.
    n_classes: Final dimension of the output tensors, representing N-way
        classification.
    d_model: Final dimension of tensors at most points in the model, including
        the initial embedding output.
    d_ff: Size of special dense layer in the feed-forward part of each encoder
        block.
    encoder_segment_lengths: Tuple, where each element denotes the number of
        transformer encoder blocks preceding a funnel transformer block.
        There is no funnel block after the last sequence of encoder blocks,
        therefore the total number of blocks in the model is equal to
        `sum(encoder_segment_lengths) + len(encoder_segment_lengths) - 1`.
    n_heads: Number of attention heads.
    max_len: Maximum symbol length for positional encoding.
    dropout: Stochastic rate (probability) for dropping an activation value
        when applying dropout within an encoder block.
    dropout_shared_axes: Tensor axes on which to share a dropout mask.
        Sharing along batch and sequence axes (`dropout_shared_axes=(0,1)`) is
        a useful way to save memory and apply consistent masks to activation
        vectors at different sequence positions.
    mode: If `'train'`, each encoder block will include dropout; else, it will
        pass all values through unaltered.
    ff_activation: Type of activation function at the end of each encoder
        block; must be an activation-type subclass of `Layer`.
    pool_layer: Type of pooling layer used for downsampling in each of the
        funnel blocks; should be `tl.AvgPool` or `tl.MaxPool`.
    pool_size: Shape of window that gets reduced to a single vector value.
        If the layer inputs are :math:`n`-dimensional arrays, then `pool_size`
        must be a tuple of length :math:`n-2`.
    strides: Offsets from the location of one window to the locations of
        neighboring windows along each axis. If specified, must be a tuple of
        the same length as `pool_size`. If None, then offsets of 1 along each
        window axis, :math:`(1, ..., 1)`, will be used.
    separate_cls: If `True`, pooling in funnel blocks is not applied to
        embeddings of the first token (`cls` from BERT paper) and only final
        embedding of this token is used for categorization - the rest are
        discarded. If `False`, each token from the beginning is pooled and
        all embeddings are averaged and mapped to output categories like in
        original `TransformerEncoder` model.
  Returns:
    A Transformer model that maps strings (conveyed via token IDs) to
    probability-like activations over a range of output classes.
  """
  assert encoder_segment_lengths

  positional_encoder = [
      tl.Embedding(vocab_size, d_model),
      tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode),
      tl.PositionalEncoding(max_len=max_len)]

  encoder_blocks = []
  n_encoder_segments = len(encoder_segment_lengths)

  for i in range(n_encoder_segments):
    # Building i'th segment
    for _ in range(encoder_segment_lengths[i]):
      # Create segment_size encoder blocks
      encoder_blocks.append(
          _EncoderBlock(d_model, d_ff, n_heads, dropout, dropout_shared_axes,
                        mode, ff_activation))

    # If not last segment, add funnel block
    if i != n_encoder_segments - 1:
      encoder_blocks.append(
          _FunnelBlock(d_model, d_ff, n_heads, dropout,
                       dropout_shared_axes, mode,
                       ff_activation, pool_layer, pool_size,
                       strides, separate_cls))

  cls_pooling = SelectFirst() if separate_cls else tl.Mean(axis=1)

  # Assemble and return the model.
  return tl.Serial(                               # toks
      # Encode.
      tl.Branch(
          positional_encoder, tl.PaddingMask()),  # vecs masks
      encoder_blocks,                             # vecs masks
      tl.Select([0], n_in=2),                     # vecs
      tl.LayerNorm(),                             # vecs

      # Map to output categories.
      cls_pooling,                                # cls
      tl.Dense(n_classes),                        # cls
  )
Exemplo n.º 9
0
def ConfigurableTransformerEncoder(vocab_size,
                                   n_classes=10,
                                   d_model=512,
                                   d_ff=2048,
                                   n_layers=6,
                                   n_heads=8,
                                   max_len=2048,
                                   dropout=0.1,
                                   dropout_shared_axes=None,
                                   mode='train',
                                   ff_activation=tl.Relu,
                                   ff_dropout=0.1,
                                   ff_chunk_size=0,
                                   ff_use_sru=0,
                                   ff_sparsity=0,
                                   ff_sparsity_type='1inN',
                                   attention_chunk_size=0,
                                   attention_type=tl.Attention,
                                   pos_type=None,
                                   pos_axial_shape=None,
                                   pos_d_axial_embs=None):
    """Returns a Transformer encoder merged with an N-way categorization head.

  This model performs text categorization:

    - input: rank 2 tensor representing a batch of text strings via token IDs
      plus padding markers; shape is (batch_size, sequence_length). The tensor
      elements are integers in `range(vocab_size)`, and `0` values mark padding
      positions.

    - output: rank 2 tensor representing a batch of log-probability
      distributions over N categories; shape is (batch_size, `n_classes`).

  Args:
    vocab_size: Input vocabulary size -- each element of the input tensor should
      be an integer in `range(vocab_size)`. These integers typically represent
      token IDs from a vocabulary-based tokenizer.
    n_classes: Final dimension of the output tensors, representing N-way
      classification.
    d_model: Final dimension of tensors at most points in the model, including
      the initial embedding output.
    d_ff: Size of special dense layer in the feed-forward part of each encoder
      block.
    n_layers: Number of encoder blocks. Each block includes attention, dropout,
      residual, feed-forward (`Dense`), and activation layers.
    n_heads: Number of attention heads.
    max_len: Maximum symbol length for positional encoding.
    dropout: Stochastic rate (probability) for dropping an activation value when
      applying dropout within an encoder block.
    dropout_shared_axes: Tensor axes on which to share a dropout mask. Sharing
      along batch and sequence axes (`dropout_shared_axes=(0,1)`) is a useful
      way to save memory and apply consistent masks to activation vectors at
      different sequence positions.
    mode: If `'train'`, each encoder block will include dropout; else, it will
      pass all values through unaltered.
    ff_activation: Type of activation function at the end of each encoder block;
      must be an activation-type subclass of `Layer`.
    ff_dropout: Stochastic rate (probability) for dropping an activation value
      when applying dropout after the FF dense layer.
    ff_chunk_size: int; if > 0, chunk feed-forward into this-sized chunks
    ff_use_sru: int or pair of ints; if > 0, we use this many SRU layers
      in addition to the feed-forward block (second int specifies sru size)
    ff_sparsity: int, if > 0 use sparse feed-forward block with this sparsity
    ff_sparsity_type: string, if ff_sparsity >0,
      use SparseFF if ff_sparsity_type=`'1inN'` and
      use BlockSparseFF if ff_sparsity_type=`'Block'`
    attention_chunk_size: int, if > 0 run attention chunked at this size
    attention_type: The attention layer to use for the encoder part.
    pos_type: string, the type of positional embeddings to use.
    pos_axial_shape: tuple of ints: input shape to use for the axial position
      encoding. If unset, axial position encoding is disabled.
    pos_d_axial_embs: tuple of ints: depth of position embedding for each axis.
      Tuple length must match pos_axial_shape, and values must sum to d_model.

  Returns:
    A Transformer model that maps strings (conveyed via token IDs) to
    probability-like activations over a range of output classes.
  """
    positional_encoder = [
        tl.Embedding(vocab_size, d_model),
        tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode),
        PositionalEncoder(mode, dropout, max_len, pos_type, pos_axial_shape,
                          pos_d_axial_embs)
    ]

    # pylint: disable=g-complex-comprehension
    encoder_blocks = [
        EncoderBlock(d_model, d_ff, n_heads, dropout, dropout_shared_axes,
                     mode, ff_activation, ff_dropout, ff_chunk_size,
                     ff_use_sru, ff_sparsity, ff_sparsity_type,
                     attention_chunk_size, attention_type)
        for i in range(n_layers)
    ]
    # pylint: enable=g-complex-comprehension

    # Assemble and return the model.
    return tl.Serial(  # toks
        # Encode.
        tl.Branch(positional_encoder, tl.PaddingMask()),  # vecs masks
        encoder_blocks,  # vecs masks
        tl.Select([0], n_in=2),  # vecs
        tl.LayerNorm(),  # vecs

        # Map to output categories.
        tl.Mean(axis=1),  # vecs
        tl.Dense(n_classes),  # vecs
    )
Exemplo n.º 10
0
def TransformerEncoder(vocab_size,
                       n_classes=10,
                       d_model=D_MODEL,
                       d_ff=D_FF,
                       n_layers=N_LAYERS,
                       n_heads=N_HEADS,
                       max_len=MAX_SEQUENCE_LENGTH,
                       dropout=DROPOUT_RATE,
                       dropout_shared_axes=DROPOUT_SHARED_AXES,
                       mode=MODE,
                       ff_activation=FF_ACTIVATION_TYPE):
    """Returns a Transformer encoder suitable for N-way classification.

  This model maps tokenized text to N-way (``n_classes``) activations:

    - input: Array representing a batch of text strings via token IDs plus
      padding markers; shape is (batch_size, sequence_length), where
      sequence_length <= ``max_len``. Array elements are integers in
      ``range(vocab_size)``, and 0 values mark padding positions.

    - output: Array representing a batch of raw (non-normalized) activations
      over ``n_classes`` categories; shape is (batch_size, ``n_classes``).

  Args:
    vocab_size: Input vocabulary size -- each element of the input array
        should be an integer in ``range(vocab_size)``. These integers typically
        represent token IDs from a vocabulary-based tokenizer.
    n_classes: Last/innermost dimension of output arrays, suitable for N-way
        classification.
    d_model: Last/innermost dimension of activation arrays at most points in
        the model, including the initial embedding output.
    d_ff: Last/innermost dimension of special (typically wider)
        :py:class:`Dense` layer in the feedforward part of each encoder block.
    n_layers: Number of encoder blocks. Each block includes attention, dropout,
        residual, layer-norm, feedforward (:py:class:`Dense`), and activation
        layers.
    n_heads: Number of attention heads.
    max_len: Maximum symbol length for positional encoding.
    dropout: Stochastic rate (probability) for dropping an activation value
        when applying dropout within encoder blocks. The same rate is also
        used for attention dropout in encoder blocks.
    dropout_shared_axes: Tensor axes on which to share a dropout mask.
        Sharing along batch and sequence axes (``dropout_shared_axes=(0,1)``)
        is a useful way to save memory and apply consistent masks to activation
        vectors at different sequence positions.
    mode: If ``'train'``, each encoder block will include dropout; else, it
        will pass all values through unaltered.
    ff_activation: Type of activation function at the end of each encoder
        block; must be an activation-type subclass of :py:class:`Layer`.

  Returns:
    A Transformer model that maps strings (conveyed by token IDs) to
    raw (non-normalized) activations over a range of output classes.
  """
    def _Dropout():
        tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode)

    def _EncBlock():
        return _EncoderBlock(d_model, d_ff, n_heads, dropout,
                             dropout_shared_axes, mode, ff_activation)

    return tl.Serial(
        tl.Branch([],
                  tl.PaddingMask()),  # Creates masks from copy of the tokens.
        tl.Embedding(vocab_size, d_model),
        _Dropout(),
        tl.PositionalEncoding(max_len=max_len),
        [_EncBlock() for _ in range(n_layers)],
        tl.Select([0], n_in=2),  # Drops the masks.
        tl.LayerNorm(),
        tl.Mean(axis=1),
        tl.Dense(n_classes),
    )
Exemplo n.º 11
0
def TransformerEncoder(vocab_size,
                       n_classes=10,
                       d_model=512,
                       d_ff=2048,
                       n_layers=6,
                       n_heads=8,
                       max_len=2048,
                       dropout=0.1,
                       dropout_shared_axes=None,
                       mode='train',
                       ff_activation=tl.Relu):
    """Returns a Transformer encoder merged with an N-way categorization head.

  This model performs text categorization:

    - input: rank 2 tensor representing a batch of text strings via token IDs
      plus padding markers; shape is (batch_size, sequence_length). The tensor
      elements are integers in `range(vocab_size)`, and `0` values mark padding
      positions.

    - output: rank 2 tensor representing a batch of log-probability
      distributions over N categories; shape is (batch_size, `n_classes`).

  Args:
    vocab_size: Input vocabulary size -- each element of the input tensor
        should be an integer in `range(vocab_size)`. These integers typically
        represent token IDs from a vocabulary-based tokenizer.
    n_classes: Final dimension of the output tensors, representing N-way
        classification.
    d_model: Final dimension of tensors at most points in the model, including
        the initial embedding output.
    d_ff: Size of special dense layer in the feed-forward part of each encoder
        block.
    n_layers: Number of encoder blocks. Each block includes attention, dropout,
        residual, feed-forward (`Dense`), and activation layers.
    n_heads: Number of attention heads.
    max_len: Maximum symbol length for positional encoding.
    dropout: Stochastic rate (probability) for dropping an activation value
        when applying dropout within an encoder block.
    dropout_shared_axes: Tensor axes on which to share a dropout mask.
        Sharing along batch and sequence axes (`dropout_shared_axes=(0,1)`) is
        a useful way to save memory and apply consistent masks to activation
        vectors at different sequence positions.
    mode: If `'train'`, each encoder block will include dropout; else, it will
        pass all values through unaltered.
    ff_activation: Type of activation function at the end of each encoder
        block; must be an activation-type subclass of `Layer`.

  Returns:
    A Transformer model that maps strings (conveyed via token IDs) to
    probability-like activations over a range of output classes.
  """
    positional_encoder = [
        tl.Embedding(vocab_size, d_model),
        tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode),
        tl.PositionalEncoding(max_len=max_len)
    ]

    encoder_blocks = [
        _EncoderBlock(d_model, d_ff, n_heads, dropout, dropout_shared_axes,
                      mode, ff_activation) for i in range(n_layers)
    ]

    # Assemble and return the model.
    return tl.Serial(  # toks
        # Encode.
        tl.Branch(positional_encoder, tl.PaddingMask()),  # vecs masks
        encoder_blocks,  # vecs masks
        tl.Select([0], n_in=2),  # vecs
        tl.LayerNorm(),  # vecs

        # Map to output categories.
        tl.Mean(axis=1),  # vecs
        tl.Dense(n_classes),  # vecs
    )
Exemplo n.º 12
0
def TransformerEncoder(vocab_size,
                       n_classes=10,
                       d_model=512,
                       d_ff=2048,
                       n_layers=6,
                       n_heads=8,
                       dropout=0.1,
                       dropout_shared_axes=None,
                       max_len=2048,
                       mode='train',
                       ff_activation=tl.Relu):
    """Returns a Transformer-style encoder.

  For each item in a batch, this model performs a sequence-to-sequence mapping:

    - input: sequence of integers, usually token id's from a fixed-size
      vocabulary -- integers in `range(M)`, where `M` is the vocabulary
      size.

    - output:  same-length sequence of N-dimensional vectors, where each vector
      can be interpreted as a log-probability distribution over N discrete
      categories.

  Args:
    vocab_size: "Vocabulary size" -- input integer id's must be in
        `range(vocab_size)`. Id's typically come from preprocessing text data
        with a vocabulary-based tokenizer.
    n_classes: Size/depth of the output vectors, intended for an N-way
        classification task.
    d_model: The basic embedding size (vector depth) of the model. This is the
        vector size used by the initial embedding layer and at many intermediate
        points in the model.
    d_ff: Vector depth (typically greater than `d_model`) used in the
        feed-forward (`Dense`) layer of each encoder block.
    n_layers: Number of encoder blocks. Each encoder block includes attention,
        dropout, residual, feed-forward (`Dense`), and activation layers.
    n_heads: Number of attention heads.
    dropout: Stochastic rate (probability) for dropping an activation value
        when applying dropout within an encoder block.
    dropout_shared_axes: Tensor axes on which to share a dropout mask.
    max_len: Maximum symbol length for positional encoding.
    mode: If `'train'`, each encoder block will include dropout; else, it will
        pass all values through unaltered.
    ff_activation: The activation function (layer) at the end of each encoder
        block.

  Returns:
    A Transformer model as a layer that maps from token id's to activations
    over a set of output classes.
  """
    positional_encoder = [
        tl.Embedding(vocab_size, d_model),
        tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode),
        tl.PositionalEncoding(max_len=max_len)
    ]

    encoder_blocks = [
        _EncoderBlock(d_model, d_ff, n_heads, dropout, dropout_shared_axes,
                      mode, ff_activation) for i in range(n_layers)
    ]

    # Assemble and return the model.
    return tl.Serial(  # toks
        # Encode.
        tl.Branch(positional_encoder, tl.PaddingMask()),  # vecs masks
        encoder_blocks,  # vecs masks
        tl.Select([0], n_in=2),  # vecs
        tl.LayerNorm(),  # vecs

        # Map to output categories.
        tl.Mean(axis=1),  # vecs
        tl.Dense(n_classes),  # vecs
        tl.LogSoftmax(),  # vecs
    )
Exemplo n.º 13
0
def TransformerEncoder(vocab_size=vocab_size,
                       n_classes=10,
                       d_model=512,
                       d_ff=2048,
                       n_layers=6,
                       n_heads=8,
                       dropout=0.1,
                       dropout_shared_axes=None,
                       max_len=2048,
                       mode='train',
                       ff_activation=tl.Relu,
                      EncoderBlock=EncoderBlock):
    
    """
    Returns a Transformer encoder model.
    The input to the model is a tensor of tokens.
  
    Args:
        vocab_size (int): vocab size. Defaults to vocab_size.
        n_classes (int): how many classes on output. Defaults to 10.
        d_model (int): depth of embedding. Defaults to 512.
        d_ff (int): depth of feed-forward layer. Defaults to 2048.
        n_layers (int): number of encoder/decoder layers. Defaults to 6.
        n_heads (int): number of attention heads. Defaults to 8.
        dropout (float): dropout rate (how much to drop out). Defaults to 0.1.
        dropout_shared_axes (int): axes on which to share dropout mask. Defaults to None.
        max_len (int): maximum symbol length for positional encoding. Defaults to 2048.
        mode (str): 'train' or 'eval'. Defaults to 'train'.
        ff_activation (function): the non-linearity in feed-forward layer. Defaults to tl.Relu.
        EncoderBlock (function): Returns the encoder block. Defaults to EncoderBlock.
  
    Returns:
        trax.layers.combinators.Serial: A Transformer model as a layer that maps
        from a tensor of tokens to activations over a set of output classes.
    """
    
    positional_encoder = [
        tl.Embedding(vocab_size, d_model),
        tl.Dropout(rate=dropout, shared_axes=dropout_shared_axes, mode=mode),
        tl.PositionalEncoding(max_len=max_len)
    ]
    
    ### START CODE HERE (REPLACE INSTANCES OF 'None' WITH YOUR CODE) ###
    
    # Use the function `EncoderBlock` (implemented above) and pass in the parameters over `n_layers`
    encoder_blocks = [EncoderBlock(d_model, d_ff, n_heads, dropout, dropout_shared_axes, mode, ff_activation) for _ in range(n_layers)]

    # Assemble and return the model.
    return tl.Serial(
        # Encode
        tl.Branch(
            # Use `positional_encoder`
            positional_encoder,
            # Use trax padding mask
            tl.PaddingMask(),
        ),
        # Use `encoder_blocks`
        encoder_blocks,
        # Use select layer
        tl.Select([0], n_in=2),
        # Use trax layer normalization
        tl.LayerNorm(),
        # Map to output categories.
        # Use trax mean. set axis to 1
        tl.Mean(axis=1),
        # Use trax Dense using `n_classes`
        tl.Dense(n_classes),
        # Use trax log softmax
        tl.LogSoftmax(),
    )