Exemplo n.º 1
0
def SpeciationEvent_effi(u, x, S_cost, subtreeLoss, k, H, nodes_table):
    heap = []
    if tree_operations.has_right_child(u) and tree_operations.has_left_child(
            u):
        w = u.adjacent_nodes()[0]
        v = u.adjacent_nodes()[1]
        if not tree_operations.is_a_leaf(x):
            if (tree_operations.has_left_child(x)) and (
                    tree_operations.has_right_child(x)):
                y = x.adjacent_nodes()[0]
                z = x.adjacent_nodes()[1]
                list_v_to_left = utiles.kmin_positive(
                    subtreeLoss[v.label][y.label], k, H, nodes_table,
                    'cost_with_losses')
                list_w_to_left = utiles.kmin_positive(
                    subtreeLoss[w.label][y.label], k, H, nodes_table,
                    'cost_with_losses')
                list_v_to_right = utiles.kmin_positive(
                    subtreeLoss[v.label][z.label], k, H, nodes_table,
                    'cost_with_losses')
                list_w_to_right = utiles.kmin_positive(
                    subtreeLoss[w.label][z.label], k, H, nodes_table,
                    'cost_with_losses')

                for hyper_node1 in list_v_to_right:
                    for hyper_node2 in list_w_to_left:
                        cost_without_losses = hyper_node1[1][
                            'cost_without_losses'] + hyper_node2[1][
                                'cost_without_losses'] + S_cost
                        cost_with_losses = hyper_node1[1][
                            'cost_with_losses'] + hyper_node2[1][
                                'cost_with_losses'] + S_cost
                        heapq.heappush(
                            heap,
                            utiles.heap_items(cost_without_losses,
                                              cost_with_losses, hyper_node1,
                                              hyper_node2))

                for hyper_node1 in list_v_to_left:
                    for hyper_node2 in list_w_to_right:
                        cost_without_losses = hyper_node1[1][
                            'cost_without_losses'] + hyper_node2[1][
                                'cost_without_losses'] + S_cost
                        cost_with_losses = hyper_node1[1][
                            'cost_with_losses'] + hyper_node2[1][
                                'cost_with_losses'] + S_cost
                        heapq.heappush(
                            heap,
                            utiles.heap_items(cost_without_losses,
                                              cost_with_losses, hyper_node1,
                                              hyper_node2))

    return heap
Exemplo n.º 2
0
def rec_multi2bi(non_binary_tree):
    if not non_binary_tree or tree_operations.is_a_leaf(non_binary_tree.seed_node):
        return non_binary_tree

    seed = non_binary_tree.seed_node
    left_binary, right_binary = split_randomly_into_two_sets(seed.child_nodes())
    left_binary_tree = rec_multi2bi(left_binary)
    right_binary_tree = rec_multi2bi(right_binary)
    new_bin = tr.Tree()
    if seed.taxon or seed.label:
        if seed.taxon:
            new_bin.seed_node.taxon = non_binary_tree.taxon
        else:
            new_bin.seed_node.label = seed.label
    if (left_binary_tree and (left_binary_tree.seed_node.taxon or not tree_operations.is_a_leaf(left_binary_tree.seed_node))) and\
            (right_binary_tree and (right_binary_tree.seed_node.taxon or not tree_operations.is_a_leaf(right_binary_tree.seed_node))):
        new_bin.seed_node.set_child_nodes([left_binary_tree.seed_node,right_binary_tree.seed_node])
    elif not left_binary_tree:
        new_bin.seed_node.set_child_nodes([right_binary_tree.seed_node])
    else:
        new_bin.seed_node.set_child_nodes([left_binary_tree.seed_node])
    return new_bin
Exemplo n.º 3
0
def number_of_scpecies_doup(G,old_sigma):
    leafs_names = {}
    should_be_found = []
    for u in G.postorder_node_iter():
        if tree_operations.is_a_leaf(u):
            specie = old_sigma[u.taxon.label]
            if specie in leafs_names:
                leafs_names[specie] += 1
            else:
                leafs_names.update({specie:1})
    for name,score in leafs_names.items():
        if score > number_of_douplications:
            should_be_found.append(name)
    return should_be_found
Exemplo n.º 4
0
def DuplicationEvent(H, u, x, D_cost, nodes_table):
    heap = []
    if (not tree_operations.is_a_leaf(x)):
        v = []
        w = []
        list_v_to_right = []
        list_w_to_right = []
        list_v_to_left = []
        list_w_to_left = []

        if (tree_operations.has_right_child(u)):
            v = u.adjacent_nodes()[0]

        if (tree_operations.has_left_child(u)):
            w = u.adjacent_nodes()[1]

        if (tree_operations.has_right_child(x)):
            for y in x.adjacent_nodes()[0].postorder_iter():  # left subtree
                list_v_to_left = list_v_to_left + find_nodes_in_hypergraph(
                    H, v.label, y.label, 0, nodes_table)
                list_w_to_left = list_w_to_left + find_nodes_in_hypergraph(
                    H, w.label, y.label, 0, nodes_table)

        if (tree_operations.has_left_child(x)):
            for z in x.adjacent_nodes()[1].postorder_iter():  # right subtree
                list_v_to_right = list_v_to_right + find_nodes_in_hypergraph(
                    H, v.label, z.label, 0, nodes_table)
                list_w_to_right = list_w_to_right + find_nodes_in_hypergraph(
                    H, w.label, z.label, 0, nodes_table)

        for hyper_node1 in list_v_to_right:
            for hyper_node2 in list_w_to_right:
                heapq.heappush(
                    heap,
                    utiles.heap_items(
                        hyper_node1[1]['cost'] + hyper_node2[1]['cost'] +
                        D_cost, hyper_node1, hyper_node2))

        for hyper_node1 in list_v_to_left:
            for hyper_node2 in list_w_to_left:
                heapq.heappush(
                    heap,
                    utiles.heap_items(
                        hyper_node1[1]['cost'] + hyper_node2[1]['cost'] +
                        D_cost, hyper_node1, hyper_node2))

    return heap
Exemplo n.º 5
0
def DuplicationEvent_effi(H, u, x, D_cost, loss_cost, nodes_table, subtreeLoss,
                          k):
    heap = []
    if not tree_operations.is_a_leaf(x):
        list_v_to_right = []
        list_w_to_right = []
        list_v_to_left = []
        list_w_to_left = []
        if tree_operations.has_right_child(
                x) and tree_operations.has_right_child(u):
            y = x.adjacent_nodes()[0]
            v = u.adjacent_nodes()[0]
            list_v_to_left = utiles.kmin_positive(
                subtreeLoss[v.label][y.label], k, H, nodes_table,
                'cost_with_losses')
        if tree_operations.has_right_child(
                x) and tree_operations.has_left_child(u):
            y = x.adjacent_nodes()[0]
            w = u.adjacent_nodes()[1]
            list_w_to_left = utiles.kmin_positive(
                subtreeLoss[w.label][y.label], k, H, nodes_table,
                'cost_with_losses')
        if tree_operations.has_left_child(
                x) and tree_operations.has_right_child(u):
            z = x.adjacent_nodes()[1]
            v = u.adjacent_nodes()[0]
            list_v_to_right = utiles.kmin_positive(
                subtreeLoss[v.label][z.label], k, H, nodes_table,
                'cost_with_losses')
        if tree_operations.has_left_child(
                x) and tree_operations.has_left_child(u):
            z = x.adjacent_nodes()[1]
            w = u.adjacent_nodes()[1]
            list_w_to_right = utiles.kmin_positive(
                subtreeLoss[w.label][z.label], k, H, nodes_table,
                'cost_with_losses')

        for hyper_node1 in list_v_to_right:
            for hyper_node2 in list_w_to_right:
                cost_without_losses = hyper_node1[1][
                    'cost_without_losses'] + hyper_node2[1][
                        'cost_without_losses'] + D_cost
                cost_with_losses = hyper_node1[1][
                    'cost_with_losses'] + hyper_node2[1][
                        'cost_with_losses'] + D_cost + 2 * loss_cost
                heapq.heappush(
                    heap,
                    utiles.heap_items(cost_without_losses, cost_with_losses,
                                      hyper_node1, hyper_node2))
            hyper_node3 = find_nodes_in_hypergraph(H, w.label, x.label, 0,
                                                   nodes_table)
            if hyper_node3:
                hyper_node3 = hyper_node3[0]
                cost_without_losses = hyper_node1[1][
                    'cost_without_losses'] + hyper_node3[1][
                        'cost_without_losses'] + D_cost
                cost_with_losses = hyper_node1[1][
                    'cost_with_losses'] + hyper_node3[1][
                        'cost_with_losses'] + D_cost + loss_cost
                heapq.heappush(
                    heap,
                    utiles.heap_items(cost_without_losses, cost_with_losses,
                                      hyper_node1, hyper_node3))
        for hyper_node1 in list_v_to_left:
            for hyper_node2 in list_w_to_left:
                cost_without_losses = hyper_node1[1][
                    'cost_without_losses'] + hyper_node2[1][
                        'cost_without_losses'] + D_cost
                cost_with_losses = hyper_node1[1][
                    'cost_with_losses'] + hyper_node2[1][
                        'cost_with_losses'] + D_cost + 2 * loss_cost
                heapq.heappush(
                    heap,
                    utiles.heap_items(cost_without_losses, cost_with_losses,
                                      hyper_node1, hyper_node2))
            hyper_node3 = find_nodes_in_hypergraph(H, w.label, x.label, 0,
                                                   nodes_table)

            if hyper_node3:
                hyper_node3 = hyper_node3[0]
                cost_without_losses = hyper_node1[1][
                    'cost_without_losses'] + hyper_node3[1][
                        'cost_without_losses'] + D_cost
                cost_with_losses = hyper_node1[1][
                    'cost_with_losses'] + hyper_node3[1][
                        'cost_with_losses'] + D_cost + loss_cost
                heapq.heappush(
                    heap,
                    utiles.heap_items(cost_without_losses, cost_with_losses,
                                      hyper_node1, hyper_node3))

        for hyper_node1 in list_w_to_right:
            hyper_node2 = find_nodes_in_hypergraph(H, v.label, x.label, 0,
                                                   nodes_table)
            if hyper_node2:
                hyper_node2 = hyper_node2[0]
                cost_without_losses = hyper_node1[1][
                    'cost_without_losses'] + hyper_node2[1][
                        'cost_without_losses'] + D_cost
                cost_with_losses = hyper_node1[1][
                    'cost_with_losses'] + hyper_node2[1][
                        'cost_with_losses'] + D_cost + loss_cost
                heapq.heappush(
                    heap,
                    utiles.heap_items(cost_without_losses, cost_with_losses,
                                      hyper_node1, hyper_node2))
        for hyper_node1 in list_w_to_left:
            hyper_node2 = find_nodes_in_hypergraph(H, v.label, x.label, 0,
                                                   nodes_table)
            if hyper_node2 != []:
                hyper_node2 = hyper_node2[0]
                cost_without_losses = hyper_node1[1][
                    'cost_without_losses'] + hyper_node2[1][
                        'cost_without_losses'] + D_cost
                cost_with_losses = hyper_node1[1][
                    'cost_with_losses'] + hyper_node2[1][
                        'cost_with_losses'] + D_cost + loss_cost
                heapq.heappush(
                    heap,
                    utiles.heap_items(cost_without_losses, cost_with_losses,
                                      hyper_node1, hyper_node2))
        for hyper_node1 in list_v_to_left:
            for hyper_node2 in list_w_to_right:
                cost_without_losses = hyper_node1[1][
                    'cost_without_losses'] + hyper_node2[1][
                        'cost_without_losses'] + D_cost
                cost_with_losses = hyper_node1[1][
                    'cost_with_losses'] + hyper_node2[1][
                        'cost_with_losses'] + D_cost + 2 * loss_cost
                heapq.heappush(
                    heap,
                    utiles.heap_items(cost_without_losses, cost_with_losses,
                                      hyper_node1, hyper_node2))
        for hyper_node1 in list_w_to_left:
            for hyper_node2 in list_v_to_right:
                cost_without_losses = hyper_node1[1][
                    'cost_without_losses'] + hyper_node2[1][
                        'cost_without_losses'] + D_cost
                cost_with_losses = hyper_node1[1][
                    'cost_with_losses'] + hyper_node2[1][
                        'cost_with_losses'] + D_cost + 2 * loss_cost
                heapq.heappush(
                    heap,
                    utiles.heap_items(cost_without_losses, cost_with_losses,
                                      hyper_node1, hyper_node2))
        hyper_node1 = find_nodes_in_hypergraph(H, w.label, x.label, 0,
                                               nodes_table)
        hyper_node2 = find_nodes_in_hypergraph(H, v.label, x.label, 0,
                                               nodes_table)
        if hyper_node2 and hyper_node1:
            hyper_node1 = hyper_node1[0]
            hyper_node2 = hyper_node2[0]
            cost_without_losses = hyper_node1[1][
                'cost_without_losses'] + hyper_node2[1][
                    'cost_without_losses'] + D_cost
            cost_with_losses = hyper_node1[1]['cost_with_losses'] + hyper_node2[
                1]['cost_with_losses'] + D_cost
            heapq.heappush(
                heap,
                utiles.heap_items(cost_without_losses, cost_with_losses,
                                  hyper_node1, hyper_node2))
    return heap
Exemplo n.º 6
0
def build_hyper_garph(S, G, k, nodes_table, D_cost, S_cost, loss_cost, HT_cost,
                      sigma, S_dis_matrix, track_solution, res):
    H = nx.MultiDiGraph()
    H.clear()

    H, H_number_of_nodes, nodes_table = inits.init_leafs_efficient(
        G, H, k, 0, sigma, nodes_table)
    incomp = inits.init_dict_inf(H, S, G, k, nodes_table, 'incomp', sigma,
                                 S_dis_matrix, loss_cost)
    subtree = inits.init_dict_inf(H, S, G, k, nodes_table, 'subtree', sigma,
                                  S_dis_matrix, loss_cost)
    subtreeLoss = inits.init_dict_inf(H, S, G, k, nodes_table, 'subtreeLoss',
                                      sigma, S_dis_matrix, loss_cost)

    for u in G.postorder_node_iter():
        if not tree_operations.is_a_leaf(u):
            for x in S.postorder_node_iter():
                key_counter = 0
                S_list = SpeciationEvent_effi(u, x, S_cost, subtreeLoss, k, H,
                                              nodes_table)
                SE = list(map(lambda nd: (nd, 'S'), S_list))
                D_list = DuplicationEvent_effi(H, u, x, D_cost, loss_cost,
                                               nodes_table, subtreeLoss, k)
                DE = list(map(lambda nd: (nd, 'D'), D_list))
                HT_list = HTEvent_effi(u, x, HT_cost, subtreeLoss, incomp, k,
                                       H, nodes_table)
                HTE = list(map(lambda nd: (nd, 'HT'), HT_list))
                Kbest = SE + DE + HTE
                random.shuffle(Kbest, random.random)
                heapq.heapify(Kbest)

                if len(Kbest) > 0:
                    H.add_node(H_number_of_nodes, s=u.label, t=x.label, l=[])
                    nodes_table[x.label][u.label] = H_number_of_nodes
                    big_node = H_number_of_nodes
                    H_number_of_nodes += 1

                for i in range(0, k):
                    if len(Kbest) > 0:
                        match = heapq.heappop(Kbest)
                        new_cost_no_losses = match[0].val[0]
                        new_cost_with_losses = match[0].val[1]
                        event = match[1]
                        match1 = match[0].val[2]
                        match2 = match[0].val[3]

                        if event == 'S':
                            H.nodes[big_node]['l'] = H.nodes[big_node]['l'] + [
                                {
                                    's': u.label,
                                    't': x.label,
                                    'cost_without_losses': new_cost_no_losses,
                                    'cost_with_losses': new_cost_with_losses,
                                    'event': "S",
                                    'list_place': len(H.nodes[big_node]['l'])
                                }
                            ]
                        elif event == 'D':
                            H.nodes[big_node]['l'] = H.nodes[big_node]['l'] + [
                                {
                                    's': u.label,
                                    't': x.label,
                                    'cost_without_losses': new_cost_no_losses,
                                    'cost_with_losses': new_cost_with_losses,
                                    'event': "D",
                                    'list_place': len(H.nodes[big_node]['l'])
                                }
                            ]
                        elif event == 'HT':
                            H.nodes[big_node]['l'] = H.nodes[big_node]['l'] + [
                                {
                                    's': u.label,
                                    't': x.label,
                                    'cost_without_losses': new_cost_no_losses,
                                    'cost_with_losses': new_cost_with_losses,
                                    'event': "HT",
                                    'list_place': len(H.nodes[big_node]['l'])
                                }
                            ]

                        H.add_edge(match1[0],
                                   big_node,
                                   key=key_counter,
                                   source=match1[1]['list_place'],
                                   target=len(H.nodes[big_node]['l']) - 1,
                                   probability=0)
                        key_counter += 1
                        H.add_edge(match2[0],
                                   big_node,
                                   key=key_counter,
                                   source=match2[1]['list_place'],
                                   target=len(H.nodes[big_node]['l']) - 1,
                                   probability=0)
                        key_counter += 1

                        new_node1 = find_nodes_in_hypergraph(
                            H, match1[1]['s'], match1[1]['t'],
                            match1[1]['list_place'] + 1, nodes_table)
                        new_node2 = find_nodes_in_hypergraph(
                            H, match2[1]['s'], match2[1]['t'],
                            match2[1]['list_place'] + 1, nodes_table)
                        if new_node1 and new_node2:
                            new_node1 = new_node1[0]
                            new_node2 = new_node2[0]
                            if event == 'D':
                                additional_cost = D_cost
                            elif event == 'S':
                                additional_cost = S_cost
                            else:
                                additional_cost = HT_cost
                            cost_with_losses = match1[1][
                                'cost_with_losses'] + new_node2[1][
                                    'cost_with_losses'] + additional_cost
                            cost_without_losses = match1[1][
                                'cost_with_losses'] + new_node2[1][
                                    'cost_without_losses'] + additional_cost
                            new_node12 = (utiles.heap_items(
                                cost_without_losses, cost_with_losses, match1,
                                new_node2), event)
                            new_node21 = (utiles.heap_items(
                                cost_without_losses, cost_with_losses, match2,
                                new_node1), event)

                            if new_node12[0] == new_node21[0]:
                                Kbest.insert(len(Kbest), new_node12)
                                Kbest.insert(len(Kbest), new_node21)
                            else:
                                heapq.heappush(Kbest, tuple(new_node12))
                                heapq.heappush(Kbest, tuple(new_node21))
                if not tree_operations.is_a_leaf(x):
                    y = x.adjacent_nodes()[0]
                    z = x.adjacent_nodes()[1]
                    subtree[u.label][x.label] += utiles.kmin_list(
                        find_nodes_in_hypergraph(H, u.label, x.label, -1,
                                                 nodes_table),
                        subtree[u.label][y.label], subtree[u.label][z.label],
                        H, nodes_table, 'cost_without_losses')

                    list1 = [
                        deepcopy(tocopy)
                        for tocopy in subtreeLoss[u.label][y.label]
                    ]
                    list2 = [
                        deepcopy(tocopy)
                        for tocopy in subtreeLoss[u.label][z.label]
                    ]
                    for lst in (list1, list2):
                        for node in lst:
                            node[1]['cost_with_losses'] += loss_cost
                    #print('u: %s, x: %s\nsubtree[u.label][y.label]:%s\nsubtree[u.label][z.label]:%s\nc(u,x): %s\nsubtreeLoss[u.label][y.label]: %s\nsubtreeLoss[u.label][z.label]: %s\n' %
                    #      (str(u.label),str(x.label),str(subtree[u.label][y.label]),str(subtree[u.label][z.label]),
                    #       str(find_nodes_in_hypergraph(H,u.label,x.label,-1,nodes_table)),str(subtreeLoss[u.label][y.label]),subtreeLoss[u.label][z.label]))
                    subtreeLoss[u.label][x.label] += utiles.kmin_list(
                        find_nodes_in_hypergraph(H, u.label, x.label, -1,
                                                 nodes_table), list1, list2, H,
                        nodes_table, 'cost_with_losses')
                else:
                    subtree[u.label][x.label] += utiles.kmin_list(
                        find_nodes_in_hypergraph(H, u.label, x.label, -1,
                                                 nodes_table), [], [], H,
                        nodes_table, 'cost_without_losses')
                    subtreeLoss[u.label][x.label] += utiles.kmin_list(
                        find_nodes_in_hypergraph(H, u.label, x.label, -1,
                                                 nodes_table), [], [], H,
                        nodes_table, 'cost_with_losses')
                    #print('u: %s, x: %s\nsubtree[u.label][y.label]:%s\nsubtree[u.label][z.label]:%s\nc(u,x): %s\nsubtreeLoss[u.label][y.label]: %s\nsubtreeLoss[u.label][z.label]: %s\n' %
                    #      (str(u.label),str(x.label),str(subtree[u.label][y.label]),str(subtree[u.label][z.label]),
                    #       str(find_nodes_in_hypergraph(H,u.label,x.label,-1,nodes_table)),str(subtreeLoss[u.label][y.label]),subtreeLoss[u.label][z.label]))

        for x in S.preorder_node_iter():
            if not tree_operations.is_a_leaf(x):
                y = x.adjacent_nodes()[0]
                z = x.adjacent_nodes()[1]
                incomp[u.label][y.label] += utiles.kmin_positive(
                    incomp[u.label][x.label] + subtree[u.label][z.label], k, H,
                    nodes_table, 'cost_without_losses')
                incomp[u.label][z.label] += utiles.kmin_positive(
                    incomp[u.label][x.label] + subtree[u.label][y.label], k, H,
                    nodes_table, 'cost_without_losses')

    H_root = [
        nd for nd in list(H.node(data=True))
        if nd[1]['s'] == G.seed_node.label and nd[1]['t'] == S.seed_node.label
    ]
    if track_solution:
        res['solution'] += 'Solution number ' + str(
            track_solution) + '\n\n' + format_solution(
                track_a_solution(H_root, H, S, G, nx.DiGraph(),
                                 int(track_solution), -1)[0].nodes(data=True))
    return H, H_number_of_nodes, nodes_table
Exemplo n.º 7
0
def build_hyper_garph(S, G, test, k, nodes_table, D_cost, S_cost, HT_cost,
                      path, alpha, sigma, save_data):
    #print('Building hypergraph...')
    H = nx.MultiDiGraph()
    H.clear()

    if test:
        print("     Reading file 'H_edges.txt'...")
        input = open(path + '/saved_data/H_edges_k=' + str(k) + '.txt', 'r')
        new_edges = []
        for line in input:
            new_edges.append(eval(line))
        new_edges = new_edges[0]
        print("     Finished reading file 'H_edges.txt'")

        print("     Reading file 'H_nodes.txt'...")
        input = open(
            path + '/saved_data/H_nodes_k=' + str(k) + '_alpha=' + str(alpha) +
            '.txt', 'r')
        new_nodes = []
        for line in input:
            new_nodes.append(eval(line))
        new_nodes = new_nodes[0]
        print("     Finished reading file 'H_nodes.txt'.")

        print("     Reading file 'nodes_table.txt'...")
        input = open(path + '/saved_data/nodes_table_k=' + str(k) + '.txt',
                     'r')
        nodes = {}
        for line in input:
            nodes.update(eval(line))
        nodes_table = nodes
        print("     Finished reading file 'nodes_table_k=" + str(k) + ".txt'")

        H.add_nodes_from(new_nodes)
        H.add_edges_from(new_edges)
        H_number_of_nodes = (len(H.nodes()))
    else:
        H, H_number_of_nodes, nodes_table = inits.init_leafs(
            G, H, k, 0, sigma, nodes_table)
        for u in G.postorder_node_iter():
            if (not tree_operations.is_a_leaf(u)):
                for x in S.postorder_node_iter():
                    key_counter = 0
                    SE = list(
                        map(lambda nd: (nd, 'S'),
                            SpeciationEvent(H, u, x, S_cost, nodes_table)))
                    DE = list(
                        map(lambda nd: (nd, 'D'),
                            DuplicationEvent(H, u, x, D_cost, nodes_table)))
                    HTE = list(
                        map(lambda nd: (nd, 'HT'),
                            HTEvent(S, H, u, x, HT_cost, nodes_table)))

                    Kbest = SE + DE + HTE
                    random.shuffle(Kbest, random.random)
                    heapq.heapify(Kbest)

                    if (len(Kbest) > 0):
                        H.add_node(H_number_of_nodes,
                                   s=u.label,
                                   t=x.label,
                                   l=[])
                        nodes_table[x.label][u.label] = H_number_of_nodes
                        big_node = H_number_of_nodes
                        H_number_of_nodes += 1

                    for i in range(0, k):
                        if (len(Kbest) > 0):
                            match = heapq.heappop(Kbest)
                            new_cost = match[0].val[0]
                            event = match[1]
                            match1 = match[0].val[1]
                            match2 = match[0].val[2]

                            if (event == 'S'):
                                H.nodes[big_node][
                                    'l'] = H.nodes[big_node]['l'] + [{
                                        's':
                                        u.label,
                                        't':
                                        x.label,
                                        'cost':
                                        new_cost,
                                        'event':
                                        "S",
                                        'list_place':
                                        len(H.nodes[big_node]['l'])
                                    }]
                            elif (event == 'D'):
                                H.nodes[big_node][
                                    'l'] = H.nodes[big_node]['l'] + [{
                                        's':
                                        u.label,
                                        't':
                                        x.label,
                                        'cost':
                                        new_cost,
                                        'event':
                                        "D",
                                        'list_place':
                                        len(H.nodes[big_node]['l'])
                                    }]
                            else:
                                H.nodes[big_node][
                                    'l'] = H.nodes[big_node]['l'] + [{
                                        's':
                                        u.label,
                                        't':
                                        x.label,
                                        'cost':
                                        new_cost,
                                        'event':
                                        "HT",
                                        'list_place':
                                        len(H.nodes[big_node]['l'])
                                    }]

                            H.add_edge(match1[0],
                                       big_node,
                                       key=key_counter,
                                       source=match1[1]['list_place'],
                                       target=len(H.nodes[big_node]['l']) - 1,
                                       probability=0)
                            key_counter += 1
                            H.add_edge(match2[0],
                                       big_node,
                                       key=key_counter,
                                       source=match2[1]['list_place'],
                                       target=len(H.nodes[big_node]['l']) - 1,
                                       probability=0)
                            key_counter += 1

                            new_node1 = find_nodes_in_hypergraph(
                                H, match1[1]['s'], match1[1]['t'],
                                match1[1]['list_place'] + 1, nodes_table)
                            new_node2 = find_nodes_in_hypergraph(
                                H, match2[1]['s'], match2[1]['t'],
                                match2[1]['list_place'] + 1, nodes_table)
                            if (new_node1 != [] and new_node2 != []):
                                new_node1 = new_node1[0]
                                new_node2 = new_node2[0]
                                if event == 'D':
                                    additional_cost = D_cost
                                elif event == 'S':
                                    additional_cost = S_cost
                                else:
                                    additional_cost = HT_cost
                                new_node12 = (utiles.heap_items(
                                    match1[1]['cost'] + new_node2[1]['cost'] +
                                    additional_cost, match1, new_node2), event)
                                new_node21 = (utiles.heap_items(
                                    match2[1]['cost'] + new_node1[1]['cost'] +
                                    additional_cost, match2, new_node1), event)

                                if (new_node12[0] == new_node21[0]):
                                    Kbest.insert(len(Kbest), new_node12)
                                    Kbest.insert(len(Kbest), new_node21)

                                else:
                                    heapq.heappush(Kbest, tuple(new_node12))
                                    heapq.heappush(Kbest, tuple(new_node21))
        if save_data:
            print('     Writing nodes...')
            file = open(path + '/saved_data/H_nodes_naive.txt', 'w')
            file.write(str(H.nodes(data=True)))
            file.close()
            print('     Finished writing nodes.\n')

            print('     Writing edges...')
            file = open(path + '/saved_data/H_edges_k=' + str(k) + '.txt', 'w')
            file.write(str(H.edges(data=True)))
            file.close()
            print('     Finished writing edges.\n')

            print('     Writing nodes table...')
            file = open(path + '/saved_data/nodes_table_k=' + str(k) + '.txt',
                        'w')
            file.write(str(nodes_table))
            file.close()
            print('     Finished writing nodes table.\n')

    #print('     No. of nodes: '+str(H_number_of_nodes * k)+'        No. on edges: '+str(len(H.edges())))
    #print('Finished building hypergraph.\n')
    return H, H_number_of_nodes, nodes_table
Exemplo n.º 8
0
def draw_new_G(G, G_nodes_identified, colors, sigma, new_G):
    print('Drawing new G...')
    plt.clf()
    tree_to_draw = nx.DiGraph()
    index = 1
    for u in G.postorder_node_iter():
        tree_to_draw.add_node(index, label=u.label)
        if not tree_operations.is_a_leaf(u):
            child = u.child_nodes()
            i = 0
            while i < len(child):
                if len(child) >= i + 1:
                    tree_to_draw.add_edge(
                        index,
                        list(G.postorder_node_iter()).index(child[i]) + 1)
                i = i + 1
        index += 1
    labels1 = nx.get_node_attributes(new_G, 'label')
    pos1 = graphviz_layout(tree_to_draw, prog='dot')

    plt.figure(12, figsize=(40, 40))  # size of fig

    print("G_nodes_identified = %s" % str(G_nodes_identified))
    nodes_color = []
    nodes_size = []

    for nd in new_G.nodes(data=True):
        if new_G.out_degree(nd[0]) == 0 and not new_G.in_degree(nd[0]) == 0:
            if colors[sigma[nd[1]['label']]] == 'red':
                nodes_color.append('red')
            else:
                nodes_color.append('black')
            nodes_size.append(200)
        elif G_nodes_identified[nd[1]['label']] > 0:
            nodes_color.append('blue')
            nodes_size.append(G_nodes_identified[nd[1]['label']] * 350)
        else:
            nodes_color.append('white')
            nodes_size.append(200)

    for r, l in labels1.items():
        for x in G.postorder_node_iter():
            if x.taxon != None:
                if x.label == l:
                    l = l + "\n (" + str(x.taxon) + ")"
                    labels1.update({r: l})

    #edges_width = []
    edges_color = []

    for e in new_G.edges(data=True):
        if e[2]['weight'][0] == 0 and e[2]['weight'][1] == 0:
            edges_color.append('grey')
            #edges_width.append(1)
        elif e[2]['weight'][0] > e[2]['weight'][1]:  #more red HT
            #edges_width.append(e[2]['weight'][0]*10)
            edges_color.append('red')
        else:  #more black HT
            #edges_width.append(e[2]['weight'][1]*10)
            edges_color.append('black')
    #edges_width = utile.normlize (edges_width,20)

    print("len(nodes_size) = %s, len(nodes_color) = %s" %
          (len(nodes_size), len(nodes_color)))
    nx.draw(tree_to_draw,
            pos1,
            arrows=True,
            node_size=nodes_size,
            node_color=nodes_color,
            edge_color=edges_color,
            width=1)
    nx.draw_networkx_labels(
        tree_to_draw,
        pos1,
        labels1,
        font_size=7,
    )

    #nx.draw_networkx_edges(tree_to_draw, pos1, )
    #nx.draw_networkx_edge_labels(tree_to_draw, pos1, font_size=6, labels=lables2)
    plt.savefig('new_G.png')
    print('Finished drawing new G.\n')
Exemplo n.º 9
0
def draw_G_diffrent_optimal_solutions(marked_nodes, colors, sigma, old_sigma,
                                      new_G, G, k, path, both, alpha, labels,
                                      TH_compare_subtrees, TH_both,
                                      TH_pattern_in_subtree, compare_subtrees,
                                      evolutinary_event, pattern, iterations,
                                      factor, size):
    print('Drawing new G...')
    plt.clf()
    plt.figure(figsize=(80, 40))
    tree_to_draw = nx.DiGraph()
    index = 1
    for u in G.postorder_node_iter():
        tree_to_draw.add_node(index, label=u.label)
        if not tree_operations.is_a_leaf(u):
            child = u.child_nodes()
            i = 0
            while i < len(child):
                if len(child) >= i + 1:
                    tree_to_draw.add_edge(
                        index,
                        list(G.postorder_node_iter()).index(child[i]) + 1)
                i = i + 1
        index += 1
    labels1 = nx.get_node_attributes(new_G[0], 'label')
    pos1 = graphviz_layout(tree_to_draw, prog='dot')

    marked_counter = inits.init_dic(G.nodes(), 0)
    max_counts = 0
    i = 1

    for solution in marked_nodes:
        print('solution number ' + str(i) + ":")
        for item in solution:
            marked_node = item[0]
            scoring = item[1]

            temp_high_score = 0
            for j in range(0, 2):
                for m in range(0, 2):
                    if temp_high_score < scoring[j][m]:
                        temp_high_score = scoring[j][m]
            print('         %s with score: %s' %
                  (str(marked_node), str(temp_high_score)))
            marked_counter[marked_node] += temp_high_score
            if marked_counter[marked_node] > max_counts:
                max_counts = marked_counter[marked_node]
        i += factor

    for u, counter in marked_counter.items():
        if max_counts > 0:
            marked_counter.update({u: (counter / max_counts) * size})
    #print('max_counter = %s, marked_counter = %s' % (str(max_counts),str(marked_counter)))

    nodes_color = []
    nodes_size = []

    for nd in new_G[0].nodes(data=True):
        if new_G[0].out_degree(
                nd[0]) == 0 and not new_G[0].in_degree(nd[0]) == 0:
            if colors[sigma[nd[1]['label']]] == 'red':
                nodes_color.append('red')
            else:
                nodes_color.append('grey')
            nodes_size.append(200)
        elif marked_counter[nd[1]['label']] > 0:
            nodes_color.append('blue')
            nodes_size.append(marked_counter[nd[1]['label']])
        else:
            nodes_color.append('white')
            nodes_size.append(200)
    if labels:
        for r, l in labels1.items():
            for x in G.postorder_node_iter():
                if x.taxon != None:
                    if x.label == l:
                        l = l + "\n (" + str(x.taxon) + ")"
                        l = l + '\n' + str(old_sigma[x.taxon.label])
                        labels1.update({r: l})

    nx.draw(tree_to_draw,
            pos1,
            arrows=True,
            node_size=nodes_size,
            node_color=nodes_color,
            width=1)
    nx.draw_networkx_labels(tree_to_draw, pos1, labels1, font_size=10)
    plt.savefig(path + '/figures/G_different_optimal. k=' + str(k) +
                '_TH_compare_subtrees = ' + str(TH_compare_subtrees) +
                '_TH_pattern_in_subtree = ' + str(TH_pattern_in_subtree) +
                "_pattern=" + pattern + "_" + evolutinary_event +
                "compare_subtrees=" + str(compare_subtrees) + '.png')
    print('Finished drawing new G.\n')
Exemplo n.º 10
0
def draw_S_and_G(S, G, old_sigma, colors, sigma, path, sol, ext, to_color):
    plt.clf()
    S_to_draw = nx.DiGraph()
    G_to_draw = nx.DiGraph()
    index = 1
    nodes_color_S = []
    nodes_color_G = []

    ##FOR S
    for u in S.postorder_node_iter():
        S_to_draw.add_node(index, label=u.label)
        if not tree_operations.is_a_leaf(u):
            child = u.child_nodes()
            i = 0
            while i < len(child):
                if len(child) >= i + 1:
                    S_to_draw.add_edge(
                        index,
                        list(S.postorder_node_iter()).index(child[i]) + 1)
                i = i + 1
        index += 1
    labels_S = nx.get_node_attributes(S_to_draw, 'label')
    for k, l in labels_S.items():
        for x in S.postorder_node_iter():
            if x.taxon != None:
                if x.label == l:
                    l = l + "\n (" + str(x.taxon) + ")"
                    labels_S.update({k: l})

    for u in S.postorder_node_iter():
        if u.label != None and u.label in colors and to_color:
            if colors[u.label] == 'red':
                nodes_color_S.append('red')
            elif colors[u.label] == 'black':
                nodes_color_S.append('grey')
            else:
                nodes_color_S.append('pink')
        else:
            nodes_color_S.append('white')
    ## FOR G
    index = 1
    for u in G.postorder_node_iter():
        G_to_draw.add_node(index, label=u.label)
        if not tree_operations.is_a_leaf(u):
            child = u.child_nodes()
            i = 0
            while i < len(child):
                if len(child) >= i + 1:
                    G_to_draw.add_edge(
                        index,
                        list(G.postorder_node_iter()).index(child[i]) + 1)
                i = i + 1
        index += 1
    labels_G = nx.get_node_attributes(G_to_draw, 'label')
    for k, l in labels_G.items():
        for x in G.postorder_node_iter():
            if x.taxon != None:
                if x.label == l and (x.taxon.label in old_sigma):
                    l = l + "\n (" + str(x.taxon) + ")"
                    l = l + '\n' + str(old_sigma[x.taxon.label])
                    labels_G.update({k: l})

    for u in G.postorder_node_iter():
        degel = False
        if sol != None:
            for int, temp_sol in sol.items():
                for p in range(0, len(temp_sol['list_of_couples'])):
                    if (u.label == temp_sol['Marked']
                            or u.label == temp_sol['list_of_couples'][p][0]
                            or u.label == temp_sol['list_of_couples'][p][1]
                        ) and not degel:
                        nodes_color_G.append('blue')
                        degel = True
        if not degel and tree_operations.is_a_leaf(
                u) and u.label in sigma and not tree_operations.isolated(
                    u) and sigma[u.label] in colors and to_color:
            if colors[sigma[u.label]] == 'red':
                nodes_color_G.append('red')
            elif colors[sigma[u.label]] == 'black':
                nodes_color_G.append('grey')
            else:
                nodes_color_G.append('pink')
        elif not degel:
            nodes_color_G.append('white')

    postree_S = graphviz_layout(S_to_draw, prog='dot')
    postree_G = graphviz_layout(G_to_draw, prog='dot')
    for k, v in postree_G.items():
        # Shift the x values of every node by 10 to the right
        lst = list(v)
        lst[0] = lst[0] + 100
        postree_G.update({k: tuple(lst)})

    fig, axes = plt.subplots(1, 2, figsize=(90, 50))
    ax = axes.flatten()

    ax[0].set_title('Species tree',
                    fontsize=50,
                    rotation='vertical',
                    x=-0.1,
                    y=0.5)
    ax[1].set_title('Gene tree',
                    fontsize=50,
                    rotation='vertical',
                    x=-0.1,
                    y=0.5)

    nx.draw(S_to_draw,
            postree_S,
            arrows=True,
            node_color=nodes_color_S,
            ax=ax[0])
    nx.draw(G_to_draw,
            postree_G,
            arrows=True,
            node_color=nodes_color_G,
            ax=ax[1])

    t1 = nx.draw_networkx_labels(S_to_draw,
                                 postree_S,
                                 labels_S,
                                 font_size=7,
                                 ax=ax[0])
    t2 = nx.draw_networkx_labels(G_to_draw,
                                 postree_G,
                                 labels_G,
                                 font_size=7,
                                 ax=ax[1])
    for _, t in t1.items():
        t.set_rotation('vertical')
    for _, t in t2.items():
        t.set_rotation('vertical')

    nx.draw_networkx_edges(S_to_draw, postree_S, ax=ax[0])
    nx.draw_networkx_edges(G_to_draw, postree_G, ax=ax[1])

    to_create = path + '/figures/'
    os.makedirs(os.path.dirname(to_create), exist_ok=True)

    plt.savefig(path + '/figures/S+G' + ext + '.png')
Exemplo n.º 11
0
def draw_tree(tree, name, old_sigma, colors, sigma, path, color_tree, x_axis,
              y_axis, label_flag):
    tree_to_draw = nx.DiGraph()
    index = 1
    nodes_color = []
    for u in tree.postorder_node_iter():
        tree_to_draw.add_node(index, label=u.label)
        if not tree_operations.is_a_leaf(u):
            child = u.child_nodes()
            i = 0
            while i < len(child):
                if len(child) >= i + 1:
                    tree_to_draw.add_edge(
                        index,
                        list(tree.postorder_node_iter()).index(child[i]) + 1)
                i = i + 1
        index += 1
    labels = nx.get_node_attributes(tree_to_draw, 'label')
    for k, l in labels.items():
        for x in tree.postorder_node_iter():
            if x.taxon != None:
                if x.label == l:
                    l = l + "\n (" + str(x.taxon) + ")"
                    if name == 'G':
                        l = l + '\n' + str(old_sigma[x.taxon.label])
                        labels.update({k: l})
                    else:
                        labels.update({k: l})

    if name == 'S':
        for u in tree.postorder_node_iter():
            if color_tree:
                if u.label != None and u.label in colors:
                    if colors[u.label] == 'red':
                        nodes_color.append('red')
                    elif colors[u.label] == 'black':
                        nodes_color.append('grey')
                    else:
                        nodes_color.append('pink')
                else:
                    nodes_color.append('white')
            else:
                nodes_color.append('white')
    else:
        for u in tree.postorder_node_iter():
            if tree_operations.is_a_leaf(u) and not tree_operations.isolated(
                    u) and sigma[u.label] in colors:
                if colors[sigma[u.label]] == 'red':
                    nodes_color.append('red')
                else:
                    nodes_color.append('grey')
            else:
                nodes_color.append('white')

    postree = graphviz_layout(tree_to_draw, prog='dot')

    plt.figure(12, figsize=(x_axis, y_axis))  # size of fig

    nx.draw(tree_to_draw, postree, arrows=True, node_color=nodes_color)
    if label_flag:
        text = nx.draw_networkx_labels(tree_to_draw,
                                       postree,
                                       labels,
                                       font_size=7)
        for _, t in text.items():
            t.set_rotation('vertical')
    nx.draw_networkx_edges(tree_to_draw, postree)
    plt.savefig(path + name + '.png')
    print('Drawing' + name)
Exemplo n.º 12
0
def draw_new_doup(marked_nodes, colors, sigma, new_G, G,old_sigma,k,TH_compare_subtrees, path, lables, glob,spec,pattern,size,evol,compare,number_of_fields,S_labels_table):
    print('Drawing new G...')
    plt.clf()
    special_colors = []
    should_be_found = number_of_scpecies_doup(G,old_sigma)
    print()
    for i in range(0, len(should_be_found)):
        special_colors.append(hex_code_colors())
    tree_to_draw = nx.DiGraph()
    index = 1
    for u in G.postorder_node_iter():
        tree_to_draw.add_node(index, label = u.label)
        if not tree_operations.is_a_leaf(u):
            child = u.child_nodes()
            i = 0
            while i < len(child):
                if len(child) >= i + 1:
                    tree_to_draw.add_edge(index, list(G.postorder_node_iter()).index(child[i]) + 1)
                i = i + 1
        index += 1
    labels1 = nx.get_node_attributes(new_G, 'label')
    pos1 = graphviz_layout(tree_to_draw, prog='dot')

    plt.figure(figsize=(x_axis, y_axis))

    nodes_color = []
    nodes_size = []
    if draw_marked:
        max_size = max([x[0] for u,x in marked_nodes.items()])
    if double_mode and draw_marked:
       max_size = max([x[1]+x[0] for u,x in marked_nodes.items()])
    exp_facor = math.log(size)

    for nd in new_G.nodes(data=True):
        flag = False
        if new_G.out_degree(nd[0]) == 0 and not new_G.in_degree(nd[0]) == 0 and color:
            temp_name = list(S_labels_table.keys())[list(S_labels_table.values()).index(sigma[nd[1]['label']])]
            for should in should_be_found:
                if temp_name.find(should) != -1 and (not flag):
                    nodes_color.append(special_colors[should_be_found.index(should)])
                    nodes_size.append(200)
                    flag = True
        if nd[1]['label'] in marked_nodes and (not flag) and draw_marked:
            nodes_color.append('blue')
            temp_size = max(marked_nodes[nd[1]['label']][0],marked_nodes[nd[1]['label']][0])
            if double_mode:
                temp_size = marked_nodes[nd[1]['label']][0]+marked_nodes[nd[1]['label']][1]
            nodes_size.append(math.exp((temp_size/max_size)*exp_facor)+500)
        elif not flag:
            nodes_color.append('#FFFFFF')
            nodes_size.append(50)
    if lables:
        for r, l in labels1.items():
            for x in G.postorder_node_iter():
                if x.taxon != None:
                    if x.label == l:
                        l = l + "\n (" + str(x.taxon) + ")"
                        l = l+'\n'+str(old_sigma[x.taxon.label])
                        labels1.update({r: l})

    nx.draw(tree_to_draw, pos1, arrows=True, node_size=nodes_size, node_color=nodes_color,
            width=1)
    if lables_flag:
        text = nx.draw_networkx_labels(tree_to_draw, pos1, labels1, font_size=7)
        for _, t in text.items():
            t.set_rotation('vertical')
    plt.savefig(path + '/figures/new_G_pattern=' + pattern + '_' + ext + '.png')
    print('Finished drawing new G.\n')