Exemplo n.º 1
0
def look_opponent_turn(board, bag, level, self_rack, opp_rack, accu, alpha,
                       beta):

    #needs to take randomly from Bag

    global M, O, R, N

    #the value of a move is its score + future values
    needed_letters = 7 - len(opp_rack)

    min_future_score = float('inf')

    #the value of a move is its score + future values
    if len(bag) >= needed_letters:

        random_rack = opp_rack + bag[:needed_letters]

        bag = bag[needed_letters:]

    else:
        random_rack = opp_rack + bag

    next_moves = brie_search(board, random_rack, O)

    for move in next_moves:

        clean_board = copy.deepcopy(board)

        score = move["score"]

        move_score = accu - score

        word = move["word"]

        if word != "N/A":
            if move["direction"] == "horizontal":
                for i in range(len(word)):
                    clean_board[move["Y"]][move["X"] + i] = word[i]
            else:
                for i in range(len(word)):
                    clean_board[move["Y"] + i][move["X"]] = word[i]

        if level > 1:
            eval = look_self_turn(clean_board, bag, level - 1, self_rack,
                                  move["rack"], move_score, alpha, beta)
        else:
            eval = move_score

        if eval < min_future_score:
            min_future_score = eval

        # beta = min(beta, move_score)
        #
        # if beta <= alpha:
        #     break

    return min_future_score
Exemplo n.º 2
0
def find_best_moves(board, rack, other_rack, bag, player):

    global turn_counter, score_list
    turn_counter += 1

    rack = rack.rack
    other_rack = other_rack.rack
    bag = bag.bag
    board = board.board

    if player.name == "Bot1":
        #best_move = BruteForce(board, rack)
        #best_move = look_ahead(board, rack, other_rack, bag)
        best_move = brie_search(board, rack, 1)[0]
    elif player.name == "Bot2":
        #best_move = BruteForce(board, rack)
        #best_move = look_ahead(board, rack, other_rack, bag)
        best_move = brie_search(board, rack, 1)[0]
        #best_move = end_game_search(board, rack, other_rack, bag)

    return best_move
Exemplo n.º 3
0
def look_ahead(board, rack, other_rack, bag):

    global M, O, R, N

    #number of moves considered for player
    M = 5
    #number of moves for opponent
    O = 1
    #number of racks guessed
    R = 10
    #number of turns in
    N = 1

    unknown_tiles = other_rack + bag

    best_move = {"score": 0, "word": "N/A", "heuristic": -9999999999}

    next_moves = brie_search(board, rack, M)

    randomness = max(len(unknown_tiles) - 7, 1)

    for move in next_moves:
        #get future value for each move

        if move["word"] != "N/A":

            future_score = 0

            for iterations in range(R):

                random.shuffle(unknown_tiles)

                alpha = float('inf')
                beta = float('-inf')

                future_score += move["score"] + (
                    look_opponent_turn(board, unknown_tiles, N, move["rack"],
                                       [], 0, alpha, beta) / randomness)

            if (future_score / R) > best_move["heuristic"]:
                best_move = {
                    "score": move["score"],
                    "word": move["word"],
                    "X": move["X"],
                    "Y": move["Y"],
                    "direction": move["direction"],
                    "heuristic": future_score / R
                }

    return best_move
Exemplo n.º 4
0
def look_self_turn(board, bag, self_rack, opp_rack, accu, alpha, beta):
    #needs to take randomly from Bag

    global M, O, R, N

    needed_letters = 7 - len(self_rack)

    max_future_score = float('-inf')

    #the value of a move is its score + future values
    if len(bag) >= needed_letters:
        random_racks = list(combinations(bag, needed_letters))
    else:
        random_racks = [tuple(bag)]

    average_accu = 0

    for rack in random_racks:

        random_rack = self_rack + list(rack)

        remaining_letters = copy.deepcopy(bag)

        for letter in list(rack):
            remaining_letters.remove(letter)

        next_moves = brie_search(board, random_rack, M)

        for move in next_moves:

            word = move["word"]

            if word != "N/A":

                clean_board = copy.deepcopy(board)

                score = move["score"]

                move_score = accu + score

                if move["direction"] == "horizontal":
                    for i in range(len(word)):
                        clean_board[move["Y"]][move["X"] + i] = word[i]
                else:
                    for i in range(len(word)):
                        clean_board[move["Y"] + i][move["X"]] = word[i]

                eval = look_opponent_turn(clean_board, remaining_letters,
                                          move["rack"], opp_rack, move_score,
                                          alpha, beta)
            else:
                eval = accu

            if eval > max_future_score:
                max_future_score = eval

        average_accu += max_future_score
        # alpha = max(alpha, move_score)
        #
        # if beta <= alpha:
        #     break

    return average_accu / len(random_racks)
Exemplo n.º 5
0
def end_game_search(board, rack, other_rack, bag):

    global M, O, R, N

    #number of moves considered for player
    M = 10
    #number of moves for opponent
    O = 10

    unknown_tiles = other_rack + bag

    best_move = {"score": 0, "word": "N/A", "heuristic": float('-inf')}

    next_moves = brie_search(board, rack, M)

    leftover_tiles = len(unknown_tiles)

    if leftover_tiles > 8:
        return next_moves[-1]
    else:
        opp_racks = list(combinations(unknown_tiles, min(7, leftover_tiles)))

    for move in next_moves:

        clean_board = copy.deepcopy(board)

        word = move["word"]

        if move["word"] != "N/A":
            if move["direction"] == "horizontal":
                for i in range(len(word)):
                    clean_board[move["Y"]][move["X"] + i] = word[i]
            else:
                for i in range(len(word)):
                    clean_board[move["Y"] + i][move["X"]] = word[i]

        future_score = 0

        i = 0
        for opp_rack in opp_racks:
            i += 1
            #try different combos of opponent racks
            remaining_letters = copy.deepcopy(unknown_tiles)

            for letter in list(opp_rack):
                remaining_letters.remove(letter)

            #get future value for each move

            if move["word"] != "N/A":

                alpha = float('inf')
                beta = float('-inf')

                future_score += move["score"] + look_opponent_turn(
                    clean_board, remaining_letters, move["rack"],
                    list(opp_rack), 0, alpha, beta)

        if move["word"] != "N/A":
            if future_score > best_move["heuristic"]:
                best_move = {
                    "score": move["score"],
                    "word": move["word"],
                    "X": move["X"],
                    "Y": move["Y"],
                    "direction": move["direction"],
                    "heuristic": future_score
                }

    return best_move