Exemplo n.º 1
0
def test_ModelTrainTester_generate_tasks(db_engine_with_results_schema,
                                         project_storage,
                                         sample_timechop_splits,
                                         sample_grid_config):
    db_engine = db_engine_with_results_schema
    model_storage_engine = ModelStorageEngine(project_storage)
    matrix_storage_engine = MatrixStorageEngine(project_storage)
    sample_matrix_store = get_matrix_store(project_storage)
    experiment_hash = save_experiment_and_get_hash({}, db_engine)
    run_id = initialize_tracking_and_get_run_id(
        experiment_hash,
        experiment_class_path="",
        random_seed=5,
        experiment_kwargs={},
        db_engine=db_engine_with_results_schema)
    # instantiate pipeline objects
    trainer = ModelTrainer(
        experiment_hash=experiment_hash,
        model_storage_engine=model_storage_engine,
        db_engine=db_engine,
        run_id=run_id,
    )
    train_tester = ModelTrainTester(
        matrix_storage_engine=matrix_storage_engine,
        model_trainer=trainer,
        model_evaluator=None,
        individual_importance_calculator=None,
        predictor=None,
        subsets=None,
        protected_groups_generator=None,
    )
    with patch.object(matrix_storage_engine,
                      'get_store',
                      return_value=sample_matrix_store):
        batches = train_tester.generate_task_batches(
            splits=sample_timechop_splits, grid_config=sample_grid_config)
        assert len(batches) == 3
        # we expect to have a task for each combination of split and classifier
        flattened_tasks = list(task for batch in batches
                               for task in batch.tasks)
        assert len(flattened_tasks) == \
            len(sample_timechop_splits) * len(list(flatten_grid_config(sample_grid_config)))
        # we also expect each task to match the call signature of process_task
        with patch.object(train_tester, 'process_task', autospec=True):
            for task in flattened_tasks:
                train_tester.process_task(**task)
Exemplo n.º 2
0
class ExperimentBase(ABC):
    """The base class for all Experiments.

    Subclasses must implement the following four methods:
    process_query_tasks
    process_matrix_build_tasks
    process_subset_tasks
    process_train_test_batches

    Look at singlethreaded.py for reference implementation of each.

    Args:
        config (dict)
        db_engine (triage.util.db.SerializableDbEngine or sqlalchemy.engine.Engine)
        project_path (string)
        replace (bool)
        cleanup_timeout (int)
        materialize_subquery_fromobjs (bool, default True) Whether or not to create and index
            tables for feature "from objects" that are subqueries. Can speed up performance
            when building features for many as-of-dates.
        profile (bool)
    """

    cleanup_timeout = 60  # seconds

    def __init__(
        self,
        config,
        db_engine,
        project_path=None,
        matrix_storage_class=CSVMatrixStore,
        replace=True,
        cleanup=False,
        cleanup_timeout=None,
        materialize_subquery_fromobjs=True,
        features_ignore_cohort=False,
        profile=False,
        save_predictions=True,
        skip_validation=False,
        partial_run=False,
    ):
        # For a partial run, skip validation and avoid cleaning up
        # we'll also skip filling default config values below
        if partial_run:
            cleanup = False
            skip_validation = True

        experiment_kwargs = bind_kwargs(
            self.__class__, **{
                key: value
                for (key, value) in locals().items()
                if key not in {'db_engine', 'config', 'self'}
            })

        self._check_config_version(config)
        self.config = config

        self.config['random_seed'] = self.config.get('random_seed',
                                                     random.randint(1, 1e7))

        random.seed(self.config['random_seed'])

        self.project_storage = ProjectStorage(project_path)
        self.model_storage_engine = ModelStorageEngine(self.project_storage)
        self.matrix_storage_engine = MatrixStorageEngine(
            self.project_storage, matrix_storage_class)
        self.project_path = project_path
        self.replace = replace
        self.save_predictions = save_predictions
        self.skip_validation = skip_validation
        self.db_engine = db_engine
        results_schema.upgrade_if_clean(dburl=self.db_engine.url)

        self.features_schema_name = "features"
        self.materialize_subquery_fromobjs = materialize_subquery_fromobjs
        self.features_ignore_cohort = features_ignore_cohort

        # only fill default values for full runs
        if not partial_run:
            ## Defaults to sane values
            self.config['temporal_config'] = fill_timechop_config_missing(
                self.config, self.db_engine)
            ## Defaults to all the entities found in the features_aggregation's from_obj
            self.config['cohort_config'] = fill_cohort_config_missing(
                self.config)
            ## Defaults to all the feature_aggregation's prefixes
            self.config[
                'feature_group_definition'] = fill_feature_group_definition(
                    self.config)

        grid_config = fill_model_grid_presets(self.config)
        self.config.pop('model_grid_preset', None)
        if grid_config is not None:
            self.config['grid_config'] = grid_config

        ###################### RUBICON ######################

        self.experiment_hash = save_experiment_and_get_hash(
            self.config, self.db_engine)
        self.run_id = initialize_tracking_and_get_run_id(
            self.experiment_hash,
            experiment_class_path=classpath(self.__class__),
            experiment_kwargs=experiment_kwargs,
            db_engine=self.db_engine)
        self.initialize_components()

        self.cleanup = cleanup
        if self.cleanup:
            logging.info(
                "cleanup is set to True, so intermediate tables (labels and cohort) "
                "will be removed after matrix creation and subset tables will be "
                "removed after model training and testing")
        else:
            logging.info(
                "cleanup is set to False, so intermediate tables (labels, cohort, and subsets) "
                "will not be removed")
        self.cleanup_timeout = (self.cleanup_timeout if cleanup_timeout is None
                                else cleanup_timeout)
        self.profile = profile
        logging.info("Generate profiling stats? (profile option): %s",
                     self.profile)

    def _check_config_version(self, config):
        if "config_version" in config:
            config_version = config["config_version"]
        else:
            logging.warning(
                "config_version key not found in experiment config. "
                "Assuming v1, which may not be correct")
            config_version = "v1"
        if config_version != CONFIG_VERSION:
            raise ValueError("Experiment config '{}' "
                             "does not match current version '{}'. "
                             "Will not run experiment.".format(
                                 config_version, CONFIG_VERSION))

    @cachedproperty
    def cohort_hash(self):
        if "query" in self.config.get("cohort_config", {}):
            return filename_friendly_hash(
                self.config["cohort_config"]["query"])
        else:
            return None

    def initialize_components(self):
        split_config = self.config["temporal_config"]

        self.chopper = Timechop(**split_config)

        cohort_config = self.config.get("cohort_config", {})
        if "query" in cohort_config:
            self.cohort_table_name = "cohort_{}_{}".format(
                cohort_config.get('name', 'default'), self.cohort_hash)
            self.cohort_table_generator = EntityDateTableGenerator(
                entity_date_table_name=self.cohort_table_name,
                db_engine=self.db_engine,
                query=cohort_config["query"],
                replace=self.replace)
        else:
            logging.warning(
                "cohort_config missing or unrecognized. Without a cohort, "
                "you will not be able to make matrices, perform feature imputation, "
                "or save time by only computing features for that cohort.")
            self.features_ignore_cohort = True
            self.cohort_table_name = "cohort_{}".format(self.experiment_hash)
            self.cohort_table_generator = EntityDateTableGeneratorNoOp()

        self.subsets = [None] + self.config.get("scoring", {}).get(
            "subsets", [])

        if "label_config" in self.config:
            label_config = self.config["label_config"]
            self.labels_table_name = "labels_{}_{}".format(
                label_config.get('name', 'default'),
                filename_friendly_hash(label_config['query']))
            self.label_generator = LabelGenerator(
                label_name=label_config.get("name", None),
                query=label_config["query"],
                replace=self.replace,
                db_engine=self.db_engine,
            )
        else:
            self.labels_table_name = "labels_{}".format(self.experiment_hash)
            self.label_generator = LabelGeneratorNoOp()
            logging.warning(
                "label_config missing or unrecognized. Without labels, "
                "you will not be able to make matrices.")

        if "bias_audit_config" in self.config:
            bias_config = self.config["bias_audit_config"]
            self.bias_hash = filename_friendly_hash(bias_config)
            self.protected_groups_table_name = f"protected_groups_{self.bias_hash}"
            self.protected_groups_generator = ProtectedGroupsGenerator(
                db_engine=self.db_engine,
                from_obj=parse_from_obj(bias_config, 'bias_from_obj'),
                attribute_columns=bias_config.get("attribute_columns", None),
                entity_id_column=bias_config.get("entity_id_column", None),
                knowledge_date_column=bias_config.get("knowledge_date_column",
                                                      None),
                protected_groups_table_name=self.protected_groups_table_name,
                replace=self.replace)
        else:
            self.protected_groups_generator = ProtectedGroupsGeneratorNoOp()
            logging.warning(
                "bias_audit_config missing or unrecognized. Without protected groups, "
                "you will not audit your models for bias and fairness.")

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name=self.features_schema_name,
            db_engine=self.db_engine)

        self.feature_generator = FeatureGenerator(
            features_schema_name=self.features_schema_name,
            replace=self.replace,
            db_engine=self.db_engine,
            feature_start_time=split_config["feature_start_time"],
            materialize_subquery_fromobjs=self.materialize_subquery_fromobjs,
            features_ignore_cohort=self.features_ignore_cohort)

        self.feature_group_creator = FeatureGroupCreator(
            self.config.get("feature_group_definition", {"all": [True]}))

        self.feature_group_mixer = FeatureGroupMixer(
            self.config.get("feature_group_strategies", ["all"]))

        self.planner = Planner(
            feature_start_time=dt_from_str(split_config["feature_start_time"]),
            label_names=[
                self.config.get("label_config",
                                {}).get("name", DEFAULT_LABEL_NAME)
            ],
            label_types=["binary"],
            cohort_names=[
                self.config.get("cohort_config", {}).get("name", None)
            ],
            user_metadata=self.config.get("user_metadata", {}),
        )

        self.matrix_builder = MatrixBuilder(
            db_config={
                "features_schema_name": self.features_schema_name,
                "labels_schema_name": "public",
                "labels_table_name": self.labels_table_name,
                "cohort_table_name": self.cohort_table_name,
            },
            matrix_storage_engine=self.matrix_storage_engine,
            experiment_hash=self.experiment_hash,
            include_missing_labels_in_train_as=self.config.get(
                "label_config", {}).get("include_missing_labels_in_train_as",
                                        None),
            engine=self.db_engine,
            replace=self.replace,
            run_id=self.run_id,
        )

        self.subsetter = Subsetter(db_engine=self.db_engine,
                                   replace=self.replace,
                                   as_of_times=self.all_as_of_times)

        self.trainer = ModelTrainer(
            experiment_hash=self.experiment_hash,
            model_storage_engine=self.model_storage_engine,
            model_grouper=ModelGrouper(self.config.get("model_group_keys",
                                                       [])),
            db_engine=self.db_engine,
            replace=self.replace,
            run_id=self.run_id,
        )

        self.predictor = Predictor(
            db_engine=self.db_engine,
            model_storage_engine=self.model_storage_engine,
            save_predictions=self.save_predictions,
            replace=self.replace,
            rank_order=self.config.get("prediction",
                                       {}).get("rank_tiebreaker", "worst"),
        )

        self.individual_importance_calculator = IndividualImportanceCalculator(
            db_engine=self.db_engine,
            n_ranks=self.config.get("individual_importance",
                                    {}).get("n_ranks", 5),
            methods=self.config.get("individual_importance",
                                    {}).get("methods", ["uniform"]),
            replace=self.replace,
        )

        self.evaluator = ModelEvaluator(
            db_engine=self.db_engine,
            testing_metric_groups=self.config.get("scoring", {}).get(
                "testing_metric_groups", []),
            training_metric_groups=self.config.get("scoring", {}).get(
                "training_metric_groups", []),
            bias_config=self.config.get("bias_audit_config", {}))

        self.model_train_tester = ModelTrainTester(
            matrix_storage_engine=self.matrix_storage_engine,
            model_evaluator=self.evaluator,
            model_trainer=self.trainer,
            individual_importance_calculator=self.
            individual_importance_calculator,
            predictor=self.predictor,
            subsets=self.subsets,
            protected_groups_generator=self.protected_groups_generator,
            cohort_hash=self.cohort_hash)

    def get_for_update(self):
        return get_for_update(self.db_engine, results_schema.Experiment,
                              self.experiment_hash)

    @cachedproperty
    def split_definitions(self):
        """Temporal splits based on the experiment's configuration

        Returns: (dict) temporal splits

        Example:
        ```
        {
            'feature_start_time': {datetime},
            'feature_end_time': {datetime},
            'label_start_time': {datetime},
            'label_end_time': {datetime},
            'train_matrix': {
                'first_as_of_time': {datetime},
                'last_as_of_time': {datetime},
                'matrix_info_end_time': {datetime},
                'training_label_timespan': {str},
                'training_as_of_date_frequency': {str},
                'max_training_history': {str},
                'as_of_times': [list of {datetime}s]
            },
            'test_matrices': [list of matrix defs similar to train_matrix]
        }
        ```

        (When updating/setting split definitions, matrices should have
        UUIDs.)

        """
        split_definitions = self.chopper.chop_time()
        logging.info("Computed and stored split definitions: %s",
                     split_definitions)
        logging.info("\n----TIME SPLIT SUMMARY----\n")
        logging.info("Number of time splits: {}".format(
            len(split_definitions)))
        for split_index, split in enumerate(split_definitions):
            train_times = split["train_matrix"]["as_of_times"]
            test_times = [
                as_of_time for test_matrix in split["test_matrices"]
                for as_of_time in test_matrix["as_of_times"]
            ]
            logging.info("""Split index {}:
            Training as_of_time_range: {} to {} ({} total)
            Testing as_of_time range: {} to {} ({} total)\n\n""".format(
                split_index,
                min(train_times),
                max(train_times),
                len(train_times),
                min(test_times),
                max(test_times),
                len(test_times),
            ))

        with self.get_for_update() as experiment:
            experiment.time_splits = len(split_definitions)
        return split_definitions

    @cachedproperty
    def all_as_of_times(self):
        """All 'as of times' in experiment config

        Used for label and feature generation.

        Returns: (list) of datetimes

        """
        all_as_of_times = []
        for split in self.split_definitions:
            all_as_of_times.extend(split["train_matrix"]["as_of_times"])
            logging.debug(
                "Adding as_of_times from train matrix: %s",
                split["train_matrix"]["as_of_times"],
            )
            for test_matrix in split["test_matrices"]:
                logging.debug(
                    "Adding as_of_times from test matrix: %s",
                    test_matrix["as_of_times"],
                )
                all_as_of_times.extend(test_matrix["as_of_times"])

        logging.info(
            "Computed %s total as_of_times for label and feature generation",
            len(all_as_of_times),
        )
        distinct_as_of_times = list(set(all_as_of_times))
        logging.info(
            "Computed %s distinct as_of_times for label and feature generation",
            len(distinct_as_of_times),
        )
        logging.info(
            "You can view all as_of_times by inspecting `.all_as_of_times` on this Experiment"
        )
        with self.get_for_update() as experiment:
            experiment.as_of_times = len(distinct_as_of_times)
        return distinct_as_of_times

    @cachedproperty
    def collate_aggregations(self):
        """Collation of ``Aggregation`` objects used by this experiment.

        Returns: (list) of ``collate.Aggregation`` objects

        """
        logging.info("Creating collate aggregations")
        if "feature_aggregations" not in self.config:
            logging.warning("No feature_aggregation config is available")
            return []
        aggregations = self.feature_generator.aggregations(
            feature_aggregation_config=self.config["feature_aggregations"],
            feature_dates=self.all_as_of_times,
            state_table=self.cohort_table_name,
        )
        with self.get_for_update() as experiment:
            experiment.feature_blocks = len(aggregations)
        return aggregations

    @cachedproperty
    def feature_aggregation_table_tasks(self):
        """All feature table query tasks specified by this
        ``Experiment``.

        Returns: (dict) keys are group table names, values are
            themselves dicts, each with keys for different stages of
            table creation (prepare, inserts, finalize) and with values
            being lists of SQL commands

        """
        logging.info("Calculating feature tasks for %s as_of_times",
                     len(self.all_as_of_times))
        return self.feature_generator.generate_all_table_tasks(
            self.collate_aggregations, task_type="aggregation")

    @cachedproperty
    def feature_imputation_table_tasks(self):
        """All feature imputation query tasks specified by this
        ``Experiment``.

        Returns: (dict) keys are group table names, values are
            themselves dicts, each with keys for different stages of
            table creation (prepare, inserts, finalize) and with values
            being lists of SQL commands

        """
        logging.info("Calculating feature tasks for %s as_of_times",
                     len(self.all_as_of_times))
        return self.feature_generator.generate_all_table_tasks(
            self.collate_aggregations, task_type="imputation")

    @cachedproperty
    def master_feature_dictionary(self):
        """All possible features found in the database. Not all features
        will necessarily end up in matrices

        Returns: (list) of dicts, keys being feature table names and
        values being lists of feature names

        """
        result = self.feature_dictionary_creator.feature_dictionary(
            feature_table_names=self.feature_imputation_table_tasks.keys(),
            index_column_lookup=self.feature_generator.index_column_lookup(
                self.collate_aggregations),
        )
        logging.info("Computed master feature dictionary: %s", result)
        with self.get_for_update() as experiment:
            experiment.total_features = sum(
                1
                for _feature in itertools.chain.from_iterable(result.values()))
        return result

    @cachedproperty
    def feature_dicts(self):
        """Feature dictionaries, representing the feature tables and
        columns configured in this experiment after computing feature
        groups.

        Returns: (list) of dicts, keys being feature table names and
        values being lists of feature names

        """
        combinations = self.feature_group_mixer.generate(
            self.feature_group_creator.subsets(self.master_feature_dictionary))
        with self.get_for_update() as experiment:
            experiment.feature_group_combinations = len(combinations)
        return combinations

    @cachedproperty
    def matrix_build_tasks(self):
        """Tasks for all matrices that need to be built as a part of
        this Experiment.

        Each task contains arguments understood by
        ``Architect.build_matrix``.

        Returns: (list) of dicts

        """
        if not table_has_data(self.cohort_table_name, self.db_engine):
            logging.warning(
                "cohort table is not populated, cannot build any matrices")
            return {}
        if not table_has_data(self.labels_table_name, self.db_engine):
            logging.warning(
                "labels table is not populated, cannot build any matrices")
            return {}
        (updated_split_definitions,
         matrix_build_tasks) = self.planner.generate_plans(
             self.split_definitions, self.feature_dicts)
        self.full_matrix_definitions = updated_split_definitions
        return matrix_build_tasks

    @cachedproperty
    def full_matrix_definitions(self):
        """Full matrix definitions

        Returns: (list) temporal and feature information for each matrix

        """
        (updated_split_definitions,
         matrix_build_tasks) = self.planner.generate_plans(
             self.split_definitions, self.feature_dicts)
        self.matrix_build_tasks = matrix_build_tasks
        return updated_split_definitions

    @property
    def all_label_timespans(self):
        """All train and test label timespans

        Returns: (list) label timespans, in string form as they appeared in the experiment config

        """
        return list(
            set(self.config["temporal_config"]["training_label_timespans"] +
                self.config["temporal_config"]["test_label_timespans"]))

    @cachedproperty
    def subset_tasks(self):
        return self.subsetter.generate_tasks(self.subsets)

    @experiment_entrypoint
    def generate_labels(self):
        """Generate labels based on experiment configuration

        Results are stored in the database, not returned
        """
        self.label_generator.generate_all_labels(self.labels_table_name,
                                                 self.all_as_of_times,
                                                 self.all_label_timespans)

    @experiment_entrypoint
    def generate_cohort(self):
        self.cohort_table_generator.generate_entity_date_table(
            as_of_dates=self.all_as_of_times)

    @experiment_entrypoint
    def generate_protected_groups(self):
        """Generate protected groups table based on experiment configuration

        Results are stored in the database, not returned
        """
        self.protected_groups_generator.generate_all_dates(
            self.all_as_of_times, self.cohort_table_name, self.cohort_hash)

    def generate_subset(self, subset_hash):
        self.subsets[
            "subset_hash"].subset_table_generator.generate_entity_date_table(
                as_of_dates=self.all_as_of_times)

    def log_split(self, split_num, split):
        logging.info(
            "Starting train/test for %s out of %s: train range: %s to %s",
            split_num + 1,
            len(self.full_matrix_definitions),
            split["train_matrix"]["first_as_of_time"],
            split["train_matrix"]["matrix_info_end_time"],
        )

    @abstractmethod
    def process_subset_tasks(self, subset_tasks):
        pass

    @abstractmethod
    def process_train_test_batches(self, train_test_batches):
        pass

    @abstractmethod
    def process_query_tasks(self, query_tasks):
        pass

    @abstractmethod
    def process_matrix_build_tasks(self, matrix_build_tasks):
        pass

    @experiment_entrypoint
    def generate_preimputation_features(self):
        self.process_query_tasks(self.feature_aggregation_table_tasks)
        logging.info(
            "Finished running preimputation feature queries. The final results are in tables: %s",
            ",".join(agg.get_table_name()
                     for agg in self.collate_aggregations),
        )

    @experiment_entrypoint
    def impute_missing_features(self):
        self.process_query_tasks(self.feature_imputation_table_tasks)
        logging.info(
            "Finished running postimputation feature queries. The final results are in tables: %s",
            ",".join(
                agg.get_table_name(imputed=True)
                for agg in self.collate_aggregations),
        )

    def build_matrices(self):
        associate_matrices_with_experiment(self.experiment_hash,
                                           self.matrix_build_tasks.keys(),
                                           self.db_engine)
        with self.get_for_update() as experiment:
            experiment.matrices_needed = len(self.matrix_build_tasks.keys())
        record_matrix_building_started(self.run_id, self.db_engine)
        self.process_matrix_build_tasks(self.matrix_build_tasks)

    @experiment_entrypoint
    def generate_matrices(self):
        logging.info("Creating cohort")
        self.generate_cohort()
        logging.info("Creating labels")
        self.generate_labels()
        logging.info("Creating feature aggregation tables")
        self.generate_preimputation_features()
        logging.info("Creating feature imputation tables")
        self.impute_missing_features()
        logging.info("Building all matrices")
        self.build_matrices()

    @experiment_entrypoint
    def generate_subsets(self):
        if self.subsets:
            logging.info("Beginning subset generation")
            self.process_subset_tasks(self.subset_tasks)
        else:
            logging.info(
                "No subsets found. Proceeding to training and testing models")

    def _all_train_test_batches(self):
        if "grid_config" not in self.config:
            logging.warning(
                "No grid_config was passed in the experiment config. No models will be trained"
            )
            return

        return self.model_train_tester.generate_task_batches(
            splits=self.full_matrix_definitions,
            grid_config=self.config.get('grid_config'),
            model_comment=self.config.get('model_comment', None))

    @experiment_entrypoint
    def train_and_test_models(self):
        self.generate_subsets()
        logging.info("Creating protected groups table")
        self.generate_protected_groups()
        batches = self._all_train_test_batches()
        if not batches:
            logging.warning("No train/test tasks found, so no training to do")
            return

        with self.get_for_update() as experiment:
            experiment.grid_size = sum(
                1 for _param in self.trainer.flattened_grid_config(
                    self.config.get('grid_config')))

        logging.info("%s train/test batches found. Beginning training.",
                     len(batches))
        model_hashes = set(task['train_kwargs']['model_hash']
                           for batch in batches for task in batch.tasks)
        associate_models_with_experiment(self.experiment_hash, model_hashes,
                                         self.db_engine)
        with self.get_for_update() as experiment:
            experiment.models_needed = len(model_hashes)
        record_model_building_started(self.run_id, self.db_engine)
        self.process_train_test_batches(batches)

    def validate(self, strict=True):
        ExperimentValidator(self.db_engine, strict=strict).run(self.config)

    def _run(self):
        if not self.skip_validation:
            self.validate()

        logging.info("Generating matrices")
        try:
            self.generate_matrices()
            self.train_and_test_models()
        finally:
            if self.cleanup:
                self.clean_up_matrix_building_tables()
                self.clean_up_subset_tables()
            logging.info("Experiment complete")
            self._log_end_of_run_report()

    def _log_end_of_run_report(self):
        missing_models = missing_model_hashes(self.experiment_hash,
                                              self.db_engine)
        if len(missing_models) > 0:
            logging.info(
                "Found %s missing model hashes."
                "This means that they were supposed to either be trained or reused"
                "by this experiment but are not present in the models table."
                "Inspect the logs for any training errors. Full list: %s",
                len(missing_models), missing_models)
        else:
            logging.info(
                "All models that were supposed to be trained were trained. Awesome!"
            )

        missing_matrices = missing_matrix_uuids(self.experiment_hash,
                                                self.db_engine)
        if len(missing_matrices) > 0:
            logging.info(
                "Found %s missing matrix uuids."
                "This means that they were supposed to either be build or reused"
                "by this experiment but are not present in the matrices table."
                "Inspect the logs for any matrix building errors. Full list: %s",
                len(missing_matrices), missing_matrices)
        else:
            logging.info(
                "All matrices that were supposed to be build were built. Awesome!"
            )

    def clean_up_matrix_building_tables(self):
        logging.info("Cleaning up cohort and labels tables")
        with timeout(self.cleanup_timeout):
            self.cohort_table_generator.clean_up()
            self.label_generator.clean_up(self.labels_table_name)

    def clean_up_subset_tables(self):
        logging.info("Cleaning up cohort and labels tables")
        with timeout(self.cleanup_timeout):
            for subset_task in self.subset_tasks:
                subset_task["subset_table_generator"].clean_up()

    def _run_profile(self):
        cp = cProfile.Profile()
        cp.runcall(self._run)
        store = self.project_storage.get_store(["profiling_stats"],
                                               f"{int(time.time())}.profile")
        with store.open('wb') as fd:
            cp.create_stats()
            marshal.dump(cp.stats, fd)
            logging.info(
                "Profiling stats of this Triage run calculated and written to %s"
                "in cProfile format.", store)

    @experiment_entrypoint
    def run(self):
        try:
            if self.profile:
                self._run_profile()
            else:
                self._run()
        except Exception:
            logging.exception("Run interrupted by uncaught exception")
            raise

    __call__ = run
Exemplo n.º 3
0
    def initialize_components(self):
        split_config = self.config["temporal_config"]

        self.chopper = Timechop(**split_config)

        cohort_config = self.config.get("cohort_config", {})
        if "query" in cohort_config:
            self.cohort_table_name = "cohort_{}_{}".format(
                cohort_config.get('name', 'default'), self.cohort_hash)
            self.cohort_table_generator = EntityDateTableGenerator(
                entity_date_table_name=self.cohort_table_name,
                db_engine=self.db_engine,
                query=cohort_config["query"],
                replace=self.replace)
        else:
            logging.warning(
                "cohort_config missing or unrecognized. Without a cohort, "
                "you will not be able to make matrices, perform feature imputation, "
                "or save time by only computing features for that cohort.")
            self.features_ignore_cohort = True
            self.cohort_table_name = "cohort_{}".format(self.experiment_hash)
            self.cohort_table_generator = EntityDateTableGeneratorNoOp()

        self.subsets = [None] + self.config.get("scoring", {}).get(
            "subsets", [])

        if "label_config" in self.config:
            label_config = self.config["label_config"]
            self.labels_table_name = "labels_{}_{}".format(
                label_config.get('name', 'default'),
                filename_friendly_hash(label_config['query']))
            self.label_generator = LabelGenerator(
                label_name=label_config.get("name", None),
                query=label_config["query"],
                replace=self.replace,
                db_engine=self.db_engine,
            )
        else:
            self.labels_table_name = "labels_{}".format(self.experiment_hash)
            self.label_generator = LabelGeneratorNoOp()
            logging.warning(
                "label_config missing or unrecognized. Without labels, "
                "you will not be able to make matrices.")

        if "bias_audit_config" in self.config:
            bias_config = self.config["bias_audit_config"]
            self.bias_hash = filename_friendly_hash(bias_config)
            self.protected_groups_table_name = f"protected_groups_{self.bias_hash}"
            self.protected_groups_generator = ProtectedGroupsGenerator(
                db_engine=self.db_engine,
                from_obj=parse_from_obj(bias_config, 'bias_from_obj'),
                attribute_columns=bias_config.get("attribute_columns", None),
                entity_id_column=bias_config.get("entity_id_column", None),
                knowledge_date_column=bias_config.get("knowledge_date_column",
                                                      None),
                protected_groups_table_name=self.protected_groups_table_name,
                replace=self.replace)
        else:
            self.protected_groups_generator = ProtectedGroupsGeneratorNoOp()
            logging.warning(
                "bias_audit_config missing or unrecognized. Without protected groups, "
                "you will not audit your models for bias and fairness.")

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name=self.features_schema_name,
            db_engine=self.db_engine)

        self.feature_generator = FeatureGenerator(
            features_schema_name=self.features_schema_name,
            replace=self.replace,
            db_engine=self.db_engine,
            feature_start_time=split_config["feature_start_time"],
            materialize_subquery_fromobjs=self.materialize_subquery_fromobjs,
            features_ignore_cohort=self.features_ignore_cohort)

        self.feature_group_creator = FeatureGroupCreator(
            self.config.get("feature_group_definition", {"all": [True]}))

        self.feature_group_mixer = FeatureGroupMixer(
            self.config.get("feature_group_strategies", ["all"]))

        self.planner = Planner(
            feature_start_time=dt_from_str(split_config["feature_start_time"]),
            label_names=[
                self.config.get("label_config",
                                {}).get("name", DEFAULT_LABEL_NAME)
            ],
            label_types=["binary"],
            cohort_names=[
                self.config.get("cohort_config", {}).get("name", None)
            ],
            user_metadata=self.config.get("user_metadata", {}),
        )

        self.matrix_builder = MatrixBuilder(
            db_config={
                "features_schema_name": self.features_schema_name,
                "labels_schema_name": "public",
                "labels_table_name": self.labels_table_name,
                "cohort_table_name": self.cohort_table_name,
            },
            matrix_storage_engine=self.matrix_storage_engine,
            experiment_hash=self.experiment_hash,
            include_missing_labels_in_train_as=self.config.get(
                "label_config", {}).get("include_missing_labels_in_train_as",
                                        None),
            engine=self.db_engine,
            replace=self.replace,
            run_id=self.run_id,
        )

        self.subsetter = Subsetter(db_engine=self.db_engine,
                                   replace=self.replace,
                                   as_of_times=self.all_as_of_times)

        self.trainer = ModelTrainer(
            experiment_hash=self.experiment_hash,
            model_storage_engine=self.model_storage_engine,
            model_grouper=ModelGrouper(self.config.get("model_group_keys",
                                                       [])),
            db_engine=self.db_engine,
            replace=self.replace,
            run_id=self.run_id,
        )

        self.predictor = Predictor(
            db_engine=self.db_engine,
            model_storage_engine=self.model_storage_engine,
            save_predictions=self.save_predictions,
            replace=self.replace,
            rank_order=self.config.get("prediction",
                                       {}).get("rank_tiebreaker", "worst"),
        )

        self.individual_importance_calculator = IndividualImportanceCalculator(
            db_engine=self.db_engine,
            n_ranks=self.config.get("individual_importance",
                                    {}).get("n_ranks", 5),
            methods=self.config.get("individual_importance",
                                    {}).get("methods", ["uniform"]),
            replace=self.replace,
        )

        self.evaluator = ModelEvaluator(
            db_engine=self.db_engine,
            testing_metric_groups=self.config.get("scoring", {}).get(
                "testing_metric_groups", []),
            training_metric_groups=self.config.get("scoring", {}).get(
                "training_metric_groups", []),
            bias_config=self.config.get("bias_audit_config", {}))

        self.model_train_tester = ModelTrainTester(
            matrix_storage_engine=self.matrix_storage_engine,
            model_evaluator=self.evaluator,
            model_trainer=self.trainer,
            individual_importance_calculator=self.
            individual_importance_calculator,
            predictor=self.predictor,
            subsets=self.subsets,
            protected_groups_generator=self.protected_groups_generator,
            cohort_hash=self.cohort_hash)
Exemplo n.º 4
0
    def __init__(self, db_engine, project_path, model_group_id):
        self.retrain_hash = None
        self.db_engine = db_engine
        upgrade_db(db_engine=self.db_engine)
        self.project_storage = ProjectStorage(project_path)
        self.model_group_id = model_group_id
        self.model_group_info = get_model_group_info(self.db_engine,
                                                     self.model_group_id)
        self.matrix_storage_engine = self.project_storage.matrix_storage_engine(
        )
        self.triage_run_id, self.experiment_config = experiment_config_from_model_group_id(
            self.db_engine, self.model_group_id)

        # This feels like it needs some refactoring since in some edge cases at least the test matrix temporal parameters
        # might differ across models in the mdoel group (the training ones shouldn't), but this should probably work for
        # the vast majorty of use cases...
        self.experiment_config['temporal_config'].update(
            temporal_params_from_matrix_metadata(
                self.db_engine, self.model_group_info['model_id_last_split']))

        # Since "testing" here is predicting forward to a single new date, the test_duration should always be '0day'
        # (regardless of what it may have been before)
        self.experiment_config['temporal_config']['test_durations'] = ['0day']

        # These lists should now only contain one item (the value actually used for the last model in this group)
        self.training_label_timespan = self.experiment_config[
            'temporal_config']['training_label_timespans'][0]
        self.test_label_timespan = self.experiment_config['temporal_config'][
            'test_label_timespans'][0]
        self.test_duration = self.experiment_config['temporal_config'][
            'test_durations'][0]
        self.feature_start_time = self.experiment_config['temporal_config'][
            'feature_start_time']

        self.label_name = self.experiment_config['label_config']['name']
        self.cohort_name = self.experiment_config['cohort_config']['name']
        self.user_metadata = self.experiment_config['user_metadata']

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name='triage_production', db_engine=self.db_engine)
        self.label_generator = LabelGenerator(
            label_name=self.experiment_config['label_config'].get(
                "name", None),
            query=self.experiment_config['label_config']["query"],
            replace=True,
            db_engine=self.db_engine,
        )

        self.labels_table_name = "labels_{}_{}_production".format(
            self.experiment_config['label_config'].get('name', 'default'),
            filename_friendly_hash(
                self.experiment_config['label_config']['query']))

        self.feature_generator = FeatureGenerator(
            db_engine=self.db_engine,
            features_schema_name="triage_production",
            feature_start_time=self.feature_start_time,
        )

        self.model_trainer = ModelTrainer(
            experiment_hash=None,
            model_storage_engine=ModelStorageEngine(self.project_storage),
            db_engine=self.db_engine,
            replace=True,
            run_id=self.triage_run_id,
        )
Exemplo n.º 5
0
class Retrainer:
    """Given a model_group_id and prediction_date, retrain a model using the all the data till prediction_date 
    Args:
        db_engine (sqlalchemy.engine)
        project_path (string)
        model_group_id (string)
    """
    def __init__(self, db_engine, project_path, model_group_id):
        self.retrain_hash = None
        self.db_engine = db_engine
        upgrade_db(db_engine=self.db_engine)
        self.project_storage = ProjectStorage(project_path)
        self.model_group_id = model_group_id
        self.model_group_info = get_model_group_info(self.db_engine,
                                                     self.model_group_id)
        self.matrix_storage_engine = self.project_storage.matrix_storage_engine(
        )
        self.triage_run_id, self.experiment_config = experiment_config_from_model_group_id(
            self.db_engine, self.model_group_id)

        # This feels like it needs some refactoring since in some edge cases at least the test matrix temporal parameters
        # might differ across models in the mdoel group (the training ones shouldn't), but this should probably work for
        # the vast majorty of use cases...
        self.experiment_config['temporal_config'].update(
            temporal_params_from_matrix_metadata(
                self.db_engine, self.model_group_info['model_id_last_split']))

        # Since "testing" here is predicting forward to a single new date, the test_duration should always be '0day'
        # (regardless of what it may have been before)
        self.experiment_config['temporal_config']['test_durations'] = ['0day']

        # These lists should now only contain one item (the value actually used for the last model in this group)
        self.training_label_timespan = self.experiment_config[
            'temporal_config']['training_label_timespans'][0]
        self.test_label_timespan = self.experiment_config['temporal_config'][
            'test_label_timespans'][0]
        self.test_duration = self.experiment_config['temporal_config'][
            'test_durations'][0]
        self.feature_start_time = self.experiment_config['temporal_config'][
            'feature_start_time']

        self.label_name = self.experiment_config['label_config']['name']
        self.cohort_name = self.experiment_config['cohort_config']['name']
        self.user_metadata = self.experiment_config['user_metadata']

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name='triage_production', db_engine=self.db_engine)
        self.label_generator = LabelGenerator(
            label_name=self.experiment_config['label_config'].get(
                "name", None),
            query=self.experiment_config['label_config']["query"],
            replace=True,
            db_engine=self.db_engine,
        )

        self.labels_table_name = "labels_{}_{}_production".format(
            self.experiment_config['label_config'].get('name', 'default'),
            filename_friendly_hash(
                self.experiment_config['label_config']['query']))

        self.feature_generator = FeatureGenerator(
            db_engine=self.db_engine,
            features_schema_name="triage_production",
            feature_start_time=self.feature_start_time,
        )

        self.model_trainer = ModelTrainer(
            experiment_hash=None,
            model_storage_engine=ModelStorageEngine(self.project_storage),
            db_engine=self.db_engine,
            replace=True,
            run_id=self.triage_run_id,
        )

    def get_temporal_config_for_retrain(self, prediction_date):
        temporal_config = self.experiment_config['temporal_config'].copy()
        temporal_config['feature_end_time'] = datetime.strftime(
            prediction_date, "%Y-%m-%d")
        temporal_config['label_end_time'] = datetime.strftime(
            prediction_date +
            convert_str_to_relativedelta(self.test_label_timespan), "%Y-%m-%d")
        # just needs to be bigger than the gap between the label start and end times
        # to ensure we only get one time split for the retraining
        temporal_config['model_update_frequency'] = '%syears' % (
            dt_from_str(temporal_config['label_end_time']).year -
            dt_from_str(temporal_config['label_start_time']).year + 10)

        return temporal_config

    def generate_all_labels(self, as_of_date):
        self.label_generator.generate_all_labels(
            labels_table=self.labels_table_name,
            as_of_dates=[as_of_date],
            label_timespans=[self.training_label_timespan])

    def generate_entity_date_table(self, as_of_date, entity_date_table_name):
        cohort_table_generator = EntityDateTableGenerator(
            db_engine=self.db_engine,
            query=self.experiment_config['cohort_config']['query'],
            entity_date_table_name=entity_date_table_name)
        cohort_table_generator.generate_entity_date_table(
            as_of_dates=[dt_from_str(as_of_date)])

    def get_collate_aggregations(self, as_of_date, state_table):
        collate_aggregations = self.feature_generator.aggregations(
            feature_aggregation_config=self.
            experiment_config['feature_aggregations'],
            feature_dates=[as_of_date],
            state_table=state_table)
        return collate_aggregations

    def get_feature_dict_and_imputation_task(self, collate_aggregations,
                                             model_id):
        (train_matrix_uuid, matrix_metadata) = train_matrix_info_from_model_id(
            self.db_engine, model_id)
        reconstructed_feature_dict = FeatureGroup()
        imputation_table_tasks = OrderedDict()
        for aggregation in collate_aggregations:
            feature_group, feature_names = get_feature_names(
                aggregation, matrix_metadata)
            reconstructed_feature_dict[feature_group] = feature_names
            # Make sure that the features imputed in training should also be imputed in production

            features_imputed_in_train = get_feature_needs_imputation_in_train(
                aggregation, feature_names)

            features_imputed_in_production = get_feature_needs_imputation_in_production(
                aggregation, self.db_engine)

            total_impute_cols = set(features_imputed_in_production) | set(
                features_imputed_in_train)
            total_nonimpute_cols = set(f for f in set(feature_names)
                                       if '_imp' not in f) - total_impute_cols

            task_generator = self.feature_generator._generate_imp_table_tasks_for

            imputation_table_tasks.update(
                task_generator(aggregation,
                               impute_cols=list(total_impute_cols),
                               nonimpute_cols=list(total_nonimpute_cols)))
        return reconstructed_feature_dict, imputation_table_tasks

    def retrain(self, prediction_date):
        """Retrain a model by going back one split from prediction_date, so the as_of_date for training would be (prediction_date - training_label_timespan)
        
        Args:
            prediction_date(str) 
        """
        # Retrain config and hash
        retrain_config = {
            "model_group_id": self.model_group_id,
            "prediction_date": prediction_date,
            "test_label_timespan": self.test_label_timespan,
            "test_duration": self.test_duration,
        }
        self.retrain_hash = save_retrain_and_get_hash(retrain_config,
                                                      self.db_engine)

        with get_for_update(self.db_engine, Retrain,
                            self.retrain_hash) as retrain:
            retrain.prediction_date = prediction_date

        # Timechop
        prediction_date = dt_from_str(prediction_date)
        temporal_config = self.get_temporal_config_for_retrain(prediction_date)
        timechopper = Timechop(**temporal_config)
        chops = timechopper.chop_time()
        assert len(chops) == 1
        chops_train_matrix = chops[0]['train_matrix']
        as_of_date = datetime.strftime(chops_train_matrix['last_as_of_time'],
                                       "%Y-%m-%d")
        retrain_definition = {
            'first_as_of_time':
            chops_train_matrix['first_as_of_time'],
            'last_as_of_time':
            chops_train_matrix['last_as_of_time'],
            'matrix_info_end_time':
            chops_train_matrix['matrix_info_end_time'],
            'as_of_times': [as_of_date],
            'training_label_timespan':
            chops_train_matrix['training_label_timespan'],
            'max_training_history':
            chops_train_matrix['max_training_history'],
            'training_as_of_date_frequency':
            chops_train_matrix['training_as_of_date_frequency'],
        }

        # Set ExperimentRun
        run = TriageRun(
            start_time=datetime.now(),
            git_hash=infer_git_hash(),
            triage_version=infer_triage_version(),
            python_version=infer_python_version(),
            run_type="retrain",
            run_hash=self.retrain_hash,
            last_updated_time=datetime.now(),
            current_status=TriageRunStatus.started,
            installed_libraries=infer_installed_libraries(),
            platform=platform.platform(),
            os_user=getpass.getuser(),
            working_directory=os.getcwd(),
            ec2_instance_type=infer_ec2_instance_type(),
            log_location=infer_log_location(),
            experiment_class_path=classpath(self.__class__),
            random_seed=retrieve_experiment_seed_from_run_id(
                self.db_engine, self.triage_run_id),
        )
        run_id = None
        with scoped_session(self.db_engine) as session:
            session.add(run)
            session.commit()
            run_id = run.run_id
        if not run_id:
            raise ValueError("Failed to retrieve run_id from saved row")

        # set ModelTrainer's run_id and experiment_hash for Retrain run
        self.model_trainer.run_id = run_id
        self.model_trainer.experiment_hash = self.retrain_hash

        # 1. Generate all labels
        self.generate_all_labels(as_of_date)
        record_labels_table_name(run_id, self.db_engine,
                                 self.labels_table_name)

        # 2. Generate cohort
        cohort_table_name = f"triage_production.cohort_{self.experiment_config['cohort_config']['name']}_retrain"
        self.generate_entity_date_table(as_of_date, cohort_table_name)
        record_cohort_table_name(run_id, self.db_engine, cohort_table_name)

        # 3. Generate feature aggregations
        collate_aggregations = self.get_collate_aggregations(
            as_of_date, cohort_table_name)
        feature_aggregation_table_tasks = self.feature_generator.generate_all_table_tasks(
            collate_aggregations, task_type='aggregation')
        self.feature_generator.process_table_tasks(
            feature_aggregation_table_tasks)

        # 4. Reconstruct feature disctionary from feature_names and generate imputation
        reconstructed_feature_dict, imputation_table_tasks = self.get_feature_dict_and_imputation_task(
            collate_aggregations,
            self.model_group_info['model_id_last_split'],
        )
        feature_group_creator = FeatureGroupCreator(
            self.experiment_config['feature_group_definition'])
        feature_group_mixer = FeatureGroupMixer(["all"])
        feature_group_dict = feature_group_mixer.generate(
            feature_group_creator.subsets(reconstructed_feature_dict))[0]
        self.feature_generator.process_table_tasks(imputation_table_tasks)
        # 5. Build new matrix
        db_config = {
            "features_schema_name": "triage_production",
            "labels_schema_name": "public",
            "cohort_table_name": cohort_table_name,
            "labels_table_name": self.labels_table_name,
        }

        record_matrix_building_started(run_id, self.db_engine)
        matrix_builder = MatrixBuilder(
            db_config=db_config,
            matrix_storage_engine=self.matrix_storage_engine,
            engine=self.db_engine,
            experiment_hash=None,
            replace=True,
        )
        new_matrix_metadata = Planner.make_metadata(
            matrix_definition=retrain_definition,
            feature_dictionary=feature_group_dict,
            label_name=self.label_name,
            label_type='binary',
            cohort_name=self.cohort_name,
            matrix_type='train',
            feature_start_time=dt_from_str(self.feature_start_time),
            user_metadata=self.user_metadata,
        )

        new_matrix_metadata['matrix_id'] = "_".join([
            self.label_name,
            'binary',
            str(as_of_date),
            'retrain',
        ])

        matrix_uuid = filename_friendly_hash(new_matrix_metadata)
        matrix_builder.build_matrix(
            as_of_times=[as_of_date],
            label_name=self.label_name,
            label_type='binary',
            feature_dictionary=feature_group_dict,
            matrix_metadata=new_matrix_metadata,
            matrix_uuid=matrix_uuid,
            matrix_type="train",
        )
        retrain_model_comment = 'retrain_' + str(datetime.now())

        misc_db_parameters = {
            'train_end_time': dt_from_str(as_of_date),
            'test': False,
            'train_matrix_uuid': matrix_uuid,
            'training_label_timespan': self.training_label_timespan,
            'model_comment': retrain_model_comment,
        }

        # get the random seed from the last split
        last_split_train_matrix_uuid, last_split_matrix_metadata = train_matrix_info_from_model_id(
            self.db_engine,
            model_id=self.model_group_info['model_id_last_split'])

        random_seed = self.model_trainer.get_or_generate_random_seed(
            model_group_id=self.model_group_id,
            matrix_metadata=last_split_matrix_metadata,
            train_matrix_uuid=last_split_train_matrix_uuid)

        # create retrain model hash
        retrain_model_hash = self.model_trainer._model_hash(
            self.matrix_storage_engine.get_store(matrix_uuid).metadata,
            class_path=self.model_group_info['model_type'],
            parameters=self.model_group_info['hyperparameters'],
            random_seed=random_seed,
        )

        associate_models_with_retrain(self.retrain_hash,
                                      (retrain_model_hash, ), self.db_engine)

        record_model_building_started(run_id, self.db_engine)
        retrain_model_id = self.model_trainer.process_train_task(
            matrix_store=self.matrix_storage_engine.get_store(matrix_uuid),
            class_path=self.model_group_info['model_type'],
            parameters=self.model_group_info['hyperparameters'],
            model_hash=retrain_model_hash,
            misc_db_parameters=misc_db_parameters,
            random_seed=random_seed,
            retrain=True,
            model_group_id=self.model_group_id)

        self.retrain_model_hash = retrieve_model_hash_from_id(
            self.db_engine, retrain_model_id)
        self.retrain_matrix_uuid = matrix_uuid
        self.retrain_model_id = retrain_model_id
        return {
            'retrain_model_comment': retrain_model_comment,
            'retrain_model_id': retrain_model_id
        }

    def predict(self, prediction_date):
        """Predict forward by creating a matrix using as_of_date = prediction_date and applying the retrain model on it

        Args:
            prediction_date(str)
        """
        cohort_table_name = f"triage_production.cohort_{self.experiment_config['cohort_config']['name']}_predict"

        # 1. Generate cohort
        self.generate_entity_date_table(prediction_date, cohort_table_name)

        # 2. Generate feature aggregations
        collate_aggregations = self.get_collate_aggregations(
            prediction_date, cohort_table_name)
        self.feature_generator.process_table_tasks(
            self.feature_generator.generate_all_table_tasks(
                collate_aggregations, task_type='aggregation'))
        # 3. Reconstruct feature disctionary from feature_names and generate imputation
        reconstructed_feature_dict, imputation_table_tasks = self.get_feature_dict_and_imputation_task(
            collate_aggregations, self.retrain_model_id)
        self.feature_generator.process_table_tasks(imputation_table_tasks)

        # 4. Build matrix
        db_config = {
            "features_schema_name": "triage_production",
            "labels_schema_name": "public",
            "cohort_table_name": cohort_table_name,
        }

        matrix_builder = MatrixBuilder(
            db_config=db_config,
            matrix_storage_engine=self.matrix_storage_engine,
            engine=self.db_engine,
            experiment_hash=None,
            replace=True,
        )
        # Use timechop to get the time definition for production
        temporal_config = self.get_temporal_config_for_retrain(
            dt_from_str(prediction_date))
        timechopper = Timechop(**temporal_config)

        retrain_config = get_retrain_config_from_model_id(
            self.db_engine, self.retrain_model_id)

        prod_definitions = timechopper.define_test_matrices(
            train_test_split_time=dt_from_str(prediction_date),
            test_duration=retrain_config['test_duration'],
            test_label_timespan=retrain_config['test_label_timespan'])
        last_split_definition = prod_definitions[-1]
        matrix_metadata = Planner.make_metadata(
            matrix_definition=last_split_definition,
            feature_dictionary=reconstructed_feature_dict,
            label_name=self.label_name,
            label_type='binary',
            cohort_name=self.cohort_name,
            matrix_type='production',
            feature_start_time=self.feature_start_time,
            user_metadata=self.user_metadata,
        )

        matrix_metadata['matrix_id'] = str(
            prediction_date
        ) + f'_model_id_{self.retrain_model_id}' + '_risklist'

        matrix_uuid = filename_friendly_hash(matrix_metadata)

        matrix_builder.build_matrix(
            as_of_times=[prediction_date],
            label_name=self.label_name,
            label_type='binary',
            feature_dictionary=reconstructed_feature_dict,
            matrix_metadata=matrix_metadata,
            matrix_uuid=matrix_uuid,
            matrix_type="production",
        )

        # 5. Predict the risk score for production
        predictor = Predictor(
            model_storage_engine=self.project_storage.model_storage_engine(),
            db_engine=self.db_engine,
            rank_order='best')

        predictor.predict(
            model_id=self.retrain_model_id,
            matrix_store=self.matrix_storage_engine.get_store(matrix_uuid),
            misc_db_parameters={},
            train_matrix_columns=self.matrix_storage_engine.get_store(
                self.retrain_matrix_uuid).columns(),
        )
        self.predict_matrix_uuid = matrix_uuid