Exemplo n.º 1
0
    def __init__(
        self,
        config,
        db_engine,
        model_storage_class=FSModelStorageEngine,
        project_path=None,
        replace=True,
        cleanup=False,
        cleanup_timeout=None,
    ):
        self._check_config_version(config)
        self.config = config

        if isinstance(db_engine, Engine):
            logging.warning(
                'Raw, unserializable SQLAlchemy engine passed. URL will be used, other options may be lost in multi-process environments'
            )
            self.db_engine = create_engine(db_engine.url)
        else:
            self.db_engine = db_engine

        if model_storage_class:
            self.model_storage_engine = model_storage_class(
                project_path=project_path)
        self.matrix_store_class = CSVMatrixStore  # can't be configurable until Architect obeys
        self.project_path = project_path
        self.replace = replace
        upgrade_db(db_engine=self.db_engine)

        self.features_schema_name = 'features'
        if project_path:
            self.matrices_directory = os.path.join(self.project_path,
                                                   'matrices')
            if not os.path.exists(self.matrices_directory):
                os.makedirs(self.matrices_directory)

        self.experiment_hash = save_experiment_and_get_hash(
            self.config, self.db_engine)
        self.labels_table_name = 'labels_{}'.format(self.experiment_hash)
        self.initialize_components()

        self.cleanup = cleanup
        if self.cleanup:
            logging.info(
                'cleanup is set to True, so intermediate tables (labels and states) will be removed after matrix creation'
            )
        else:
            logging.info(
                'cleanup is set to False, so intermediate tables (labels and states) will not be removed after matrix creation'
            )
        self.cleanup_timeout = (self.cleanup_timeout if cleanup_timeout is None
                                else cleanup_timeout)
Exemplo n.º 2
0
    def __init__(
        self,
        config,
        db_engine,
        project_path=None,
        matrix_storage_class=CSVMatrixStore,
        replace=True,
        cleanup=False,
        cleanup_timeout=None,
        materialize_subquery_fromobjs=True,
        features_ignore_cohort=False,
        profile=False,
        save_predictions=True,
    ):
        self._check_config_version(config)
        self.config = config

        self.project_storage = ProjectStorage(project_path)
        self.model_storage_engine = ModelStorageEngine(self.project_storage)
        self.matrix_storage_engine = MatrixStorageEngine(
            self.project_storage, matrix_storage_class)
        self.project_path = project_path
        self.replace = replace
        self.save_predictions = save_predictions
        self.db_engine = db_engine
        upgrade_db(db_engine=self.db_engine)

        self.features_schema_name = "features"
        self.materialize_subquery_fromobjs = materialize_subquery_fromobjs
        self.features_ignore_cohort = features_ignore_cohort
        self.experiment_hash = save_experiment_and_get_hash(
            self.config, self.db_engine)
        self.initialize_components()

        self.cleanup = cleanup
        if self.cleanup:
            logging.info(
                "cleanup is set to True, so intermediate tables (labels and cohort) "
                "will be removed after matrix creation and subset tables will be "
                "removed after model training and testing")
        else:
            logging.info(
                "cleanup is set to False, so intermediate tables (labels, cohort, and subsets) "
                "will not be removed")
        self.cleanup_timeout = (self.cleanup_timeout if cleanup_timeout is None
                                else cleanup_timeout)
        self.profile = profile
        logging.info("Generate profiling stats? (profile option): %s",
                     self.profile)
Exemplo n.º 3
0
    def __init__(
        self,
        config,
        db_engine,
        project_path=None,
        matrix_storage_class=CSVMatrixStore,
        replace=True,
        cleanup=False,
        cleanup_timeout=None,
    ):
        self._check_config_version(config)
        self.config = config

        if isinstance(db_engine, Engine):
            logging.warning(
                "Raw, unserializable SQLAlchemy engine passed. "
                "URL will be used, other options may be lost in multi-process environments"
            )
            self.db_engine = create_engine(db_engine.url)
        else:
            self.db_engine = db_engine

        self.project_storage = ProjectStorage(project_path)
        self.model_storage_engine = ModelStorageEngine(self.project_storage)
        self.matrix_storage_engine = MatrixStorageEngine(
            self.project_storage, matrix_storage_class)
        self.project_path = project_path
        self.replace = replace
        upgrade_db(db_engine=self.db_engine)

        self.features_schema_name = "features"
        self.experiment_hash = save_experiment_and_get_hash(
            self.config, self.db_engine)
        self.labels_table_name = "labels_{}".format(self.experiment_hash)
        self.initialize_components()

        self.cleanup = cleanup
        if self.cleanup:
            logging.info(
                "cleanup is set to True, so intermediate tables (labels and states) "
                "will be removed after matrix creation")
        else:
            logging.info(
                "cleanup is set to False, so intermediate tables (labels and states) "
                "will not be removed after matrix creation")
        self.cleanup_timeout = (self.cleanup_timeout if cleanup_timeout is None
                                else cleanup_timeout)
Exemplo n.º 4
0
 def upgrade(self, args):
     """Upgrade triage results database"""
     upgrade_db(args.dbfile)
Exemplo n.º 5
0
 def upgrade(self, args):
     """Upgrade triage results database"""
     upgrade_db(revision=args.revision, dburl=self.root.db_url)
Exemplo n.º 6
0
def predict_forward_with_existed_model(db_engine, project_path, model_id,
                                       as_of_date):
    """Predict forward given model_id and as_of_date and store the prediction in database

    Args:
            db_engine (sqlalchemy.db.engine)
            project_storage (catwalk.storage.ProjectStorage)
            model_id (int) The id of a given model in the database
            as_of_date (string) a date string like "YYYY-MM-DD"
    """
    logger.spam("In PREDICT LIST................")
    upgrade_db(db_engine=db_engine)
    project_storage = ProjectStorage(project_path)
    matrix_storage_engine = project_storage.matrix_storage_engine()
    # 1. Get feature and cohort config from database
    (train_matrix_uuid,
     matrix_metadata) = train_matrix_info_from_model_id(db_engine, model_id)
    experiment_config = experiment_config_from_model_id(db_engine, model_id)

    # 2. Generate cohort
    cohort_table_name = f"triage_production.cohort_{experiment_config['cohort_config']['name']}"
    cohort_table_generator = EntityDateTableGenerator(
        db_engine=db_engine,
        query=experiment_config['cohort_config']['query'],
        entity_date_table_name=cohort_table_name)
    cohort_table_generator.generate_entity_date_table(
        as_of_dates=[dt_from_str(as_of_date)])

    # 3. Generate feature aggregations
    feature_generator = FeatureGenerator(
        db_engine=db_engine,
        features_schema_name="triage_production",
        feature_start_time=experiment_config['temporal_config']
        ['feature_start_time'],
    )
    collate_aggregations = feature_generator.aggregations(
        feature_aggregation_config=experiment_config['feature_aggregations'],
        feature_dates=[as_of_date],
        state_table=cohort_table_name)
    feature_generator.process_table_tasks(
        feature_generator.generate_all_table_tasks(collate_aggregations,
                                                   task_type='aggregation'))

    # 4. Reconstruct feature disctionary from feature_names and generate imputation

    reconstructed_feature_dict = FeatureGroup()
    imputation_table_tasks = OrderedDict()

    for aggregation in collate_aggregations:
        feature_group, feature_names = get_feature_names(
            aggregation, matrix_metadata)
        reconstructed_feature_dict[feature_group] = feature_names

        # Make sure that the features imputed in training should also be imputed in production

        features_imputed_in_train = get_feature_needs_imputation_in_train(
            aggregation, feature_names)

        features_imputed_in_production = get_feature_needs_imputation_in_production(
            aggregation, db_engine)

        total_impute_cols = set(features_imputed_in_production) | set(
            features_imputed_in_train)
        total_nonimpute_cols = set(f for f in set(feature_names)
                                   if '_imp' not in f) - total_impute_cols

        task_generator = feature_generator._generate_imp_table_tasks_for

        imputation_table_tasks.update(
            task_generator(aggregation,
                           impute_cols=list(total_impute_cols),
                           nonimpute_cols=list(total_nonimpute_cols)))
    feature_generator.process_table_tasks(imputation_table_tasks)

    # 5. Build matrix
    db_config = {
        "features_schema_name": "triage_production",
        "labels_schema_name": "public",
        "cohort_table_name": cohort_table_name,
    }

    matrix_builder = MatrixBuilder(
        db_config=db_config,
        matrix_storage_engine=matrix_storage_engine,
        engine=db_engine,
        experiment_hash=None,
        replace=True,
    )

    feature_start_time = experiment_config['temporal_config'][
        'feature_start_time']
    label_name = experiment_config['label_config']['name']
    label_type = 'binary'
    cohort_name = experiment_config['cohort_config']['name']
    user_metadata = experiment_config['user_metadata']

    # Use timechop to get the time definition for production
    temporal_config = experiment_config["temporal_config"]
    temporal_config.update(
        temporal_params_from_matrix_metadata(db_engine, model_id))
    timechopper = Timechop(**temporal_config)
    prod_definitions = timechopper.define_test_matrices(
        train_test_split_time=dt_from_str(as_of_date),
        test_duration=temporal_config['test_durations'][0],
        test_label_timespan=temporal_config['test_label_timespans'][0])

    matrix_metadata = Planner.make_metadata(
        prod_definitions[-1],
        reconstructed_feature_dict,
        label_name,
        label_type,
        cohort_name,
        'production',
        feature_start_time,
        user_metadata,
    )

    matrix_metadata['matrix_id'] = str(
        as_of_date) + f'_model_id_{model_id}' + '_risklist'

    matrix_uuid = filename_friendly_hash(matrix_metadata)

    matrix_builder.build_matrix(
        as_of_times=[as_of_date],
        label_name=label_name,
        label_type=label_type,
        feature_dictionary=reconstructed_feature_dict,
        matrix_metadata=matrix_metadata,
        matrix_uuid=matrix_uuid,
        matrix_type="production",
    )

    # 6. Predict the risk score for production
    predictor = Predictor(
        model_storage_engine=project_storage.model_storage_engine(),
        db_engine=db_engine,
        rank_order='best')

    predictor.predict(
        model_id=model_id,
        matrix_store=matrix_storage_engine.get_store(matrix_uuid),
        misc_db_parameters={},
        train_matrix_columns=matrix_storage_engine.get_store(
            train_matrix_uuid).columns())
Exemplo n.º 7
0
    def __init__(self, db_engine, project_path, model_group_id):
        self.retrain_hash = None
        self.db_engine = db_engine
        upgrade_db(db_engine=self.db_engine)
        self.project_storage = ProjectStorage(project_path)
        self.model_group_id = model_group_id
        self.model_group_info = get_model_group_info(self.db_engine,
                                                     self.model_group_id)
        self.matrix_storage_engine = self.project_storage.matrix_storage_engine(
        )
        self.triage_run_id, self.experiment_config = experiment_config_from_model_group_id(
            self.db_engine, self.model_group_id)

        # This feels like it needs some refactoring since in some edge cases at least the test matrix temporal parameters
        # might differ across models in the mdoel group (the training ones shouldn't), but this should probably work for
        # the vast majorty of use cases...
        self.experiment_config['temporal_config'].update(
            temporal_params_from_matrix_metadata(
                self.db_engine, self.model_group_info['model_id_last_split']))

        # Since "testing" here is predicting forward to a single new date, the test_duration should always be '0day'
        # (regardless of what it may have been before)
        self.experiment_config['temporal_config']['test_durations'] = ['0day']

        # These lists should now only contain one item (the value actually used for the last model in this group)
        self.training_label_timespan = self.experiment_config[
            'temporal_config']['training_label_timespans'][0]
        self.test_label_timespan = self.experiment_config['temporal_config'][
            'test_label_timespans'][0]
        self.test_duration = self.experiment_config['temporal_config'][
            'test_durations'][0]
        self.feature_start_time = self.experiment_config['temporal_config'][
            'feature_start_time']

        self.label_name = self.experiment_config['label_config']['name']
        self.cohort_name = self.experiment_config['cohort_config']['name']
        self.user_metadata = self.experiment_config['user_metadata']

        self.feature_dictionary_creator = FeatureDictionaryCreator(
            features_schema_name='triage_production', db_engine=self.db_engine)
        self.label_generator = LabelGenerator(
            label_name=self.experiment_config['label_config'].get(
                "name", None),
            query=self.experiment_config['label_config']["query"],
            replace=True,
            db_engine=self.db_engine,
        )

        self.labels_table_name = "labels_{}_{}_production".format(
            self.experiment_config['label_config'].get('name', 'default'),
            filename_friendly_hash(
                self.experiment_config['label_config']['query']))

        self.feature_generator = FeatureGenerator(
            db_engine=self.db_engine,
            features_schema_name="triage_production",
            feature_start_time=self.feature_start_time,
        )

        self.model_trainer = ModelTrainer(
            experiment_hash=None,
            model_storage_engine=ModelStorageEngine(self.project_storage),
            db_engine=self.db_engine,
            replace=True,
            run_id=self.triage_run_id,
        )