Exemplo n.º 1
0
def add_mobility_action(circus, params):

    logging.info(" creating customer mobility action")
    mov_prof = [
        1., 1., 1., 1., 1., 1., 1., 1., 5., 10., 5., 1., 1., 1., 1., 1., 1.,
        5., 10., 5., 1., 1., 1., 1.
    ]
    mobility_time_gen = CyclicTimerGenerator(
        clock=circus.clock,
        seed=next(circus.seeder),
        config=CyclicTimerProfile(
            profile=mov_prof,
            profile_time_steps="1H",
            start_date=pd.Timestamp("12 September 2016 00:00.00"),
        ))

    gaussian_activity = NumpyRandomGenerator(
        method="normal",
        loc=params["mean_daily_customer_mobility_activity"],
        scale=params["std_daily_customer_mobility_activity"],
        seed=next(circus.seeder))

    mobility_activity_gen = gaussian_activity.map(f=bound_value(lb=.5))

    mobility_action = circus.create_story(
        name="customer_mobility",
        initiating_actor=circus.actors["customers"],
        actorid_field="CUST_ID",
        timer_gen=mobility_time_gen,
        activity_gen=mobility_activity_gen)

    logging.info(" adding operations")

    mobility_action.set_operations(
        circus.actors["customers"].ops.lookup(
            id_field="CUST_ID",
            select={"CURRENT_SITE": "PREV_SITE"}),

        # selects a destination site (or maybe the same as current... ^^)

        circus.actors["customers"] \
            .get_relationship("POSSIBLE_SITES") \
            .ops.select_one(from_field="CUST_ID", named_as="NEW_SITE"),

        # update the SITE attribute of the customers accordingly
        circus.actors["customers"] \
            .get_attribute("CURRENT_SITE") \
            .ops.update(
                id_field="CUST_ID",
                copy_from_field="NEW_SITE"),

        circus.clock.ops.timestamp(named_as="TIME"),

        # create mobility logs
        FieldLogger(log_id="customer_mobility_logs",
                    cols=["TIME", "CUST_ID", "PREV_SITE",
                          "NEW_SITE"]),
    )
Exemplo n.º 2
0
def add_mobility_action(circus, params):

    logging.info(" creating field agent mobility action")

    # Field agents move only during the work hours
    mobility_time_gen = WorkHoursTimerGenerator(clock=circus.clock,
                                                seed=next(circus.seeder))

    fa_mean_weekly_activity = mobility_time_gen.activity(
        n=params["mean_daily_fa_mobility_activity"], per=pd.Timedelta("1day"))

    fa_weekly_std = mobility_time_gen.activity(
        n=params["std_daily_fa_mobility_activity"], per=pd.Timedelta("1day"))

    gaussian_activity = NumpyRandomGenerator(method="normal",
                                             loc=fa_mean_weekly_activity,
                                             scale=fa_weekly_std,
                                             seed=next(circus.seeder))

    mobility_activity_gen = gaussian_activity.map(f=bound_value(lb=1))

    field_agents = circus.actors["field_agents"]

    mobility_action = circus.create_story(name="field_agent_mobility",
                                          initiating_actor=field_agents,
                                          actorid_field="FA_ID",
                                          timer_gen=mobility_time_gen,
                                          activity_gen=mobility_activity_gen)

    logging.info(" adding operations")

    mobility_action.set_operations(
        field_agents.ops.lookup(
            id_field="FA_ID",
            select={"CURRENT_SITE": "PREV_SITE"}),

        # selects a destination site (or maybe the same as current... ^^)

        field_agents \
            .get_relationship("POSSIBLE_SITES") \
            .ops.select_one(from_field="FA_ID", named_as="NEW_SITE"),

        # update the SITE attribute of the field agents accordingly
        field_agents \
            .get_attribute("CURRENT_SITE") \
            .ops.update(
                id_field="FA_ID",
                copy_from_field="NEW_SITE"),

        circus.clock.ops.timestamp(named_as="TIME"),

        # create mobility logs
        FieldLogger(log_id="field_agent_mobility_logs",
                    cols=["TIME", "FA_ID", "PREV_SITE",
                          "NEW_SITE"]),
    )
Exemplo n.º 3
0
def test_populations_during_working_hours():

    with path.tempdir() as log_parent_folder:
        log_folder = os.path.join(log_parent_folder, "logs")

        circus = Circus(name="tested_circus",
                        master_seed=1,
                        start=pd.Timestamp("8 June 2016"),
                        step_duration=pd.Timedelta("1h"))

        field_agents = circus.create_population(
            name="fa",
            size=100,
            ids_gen=SequencialGenerator(max_length=3, prefix="id_"))

        mobility_time_gen = WorkHoursTimerGenerator(clock=circus.clock,
                                                    seed=next(circus.seeder))

        five_per_day = mobility_time_gen.activity(n=5,
                                                  per=pd.Timedelta("1day"))

        std_per_day = mobility_time_gen.activity(n=.5,
                                                 per=pd.Timedelta("1day"))

        gaussian_activity = NumpyRandomGenerator(method="normal",
                                                 loc=five_per_day,
                                                 scale=std_per_day,
                                                 seed=1)
        mobility_activity_gen = gaussian_activity.map(bound_value(lb=1))

        # just a dummy operation to produce some logs
        story = circus.create_story(name="test_story",
                                    initiating_population=field_agents,
                                    member_id_field="some_id",
                                    timer_gen=mobility_time_gen,
                                    activity_gen=mobility_activity_gen)

        story.set_operations(circus.clock.ops.timestamp(named_as="TIME"),
                             FieldLogger(log_id="the_logs"))

        circus.run(duration=pd.Timedelta("30 days"),
                   log_output_folder=log_folder)

        logging.info("loading produced logs")
        logs = load_all_logs(log_folder)["the_logs"]

        logging.info("number of produced logs: {} logs".format(logs.shape[0]))

        # 30 days of simulation should produce 100 * 5 * 30 == 15k logs
        assert 14e3 <= logs.shape[0] <= 16e3