Exemplo n.º 1
0
def lts_discovery(X_train, y_train, X_test, y_test, nr_shap, l, r, reg, max_it,
                  shap_out_path, pred_out_path, timing_out_path):
    # Fit LTS model, print metrics on test-set, write away predictions and shapelets
    shapelet_dict = grabocka_params_to_shapelet_size_dict(
        X_train.shape[0], X_train.shape[1], int(nr_shap * X_train.shape[1]), l,
        r)

    clf = ShapeletModel(n_shapelets_per_size=shapelet_dict,
                        max_iter=max_it,
                        verbose_level=1,
                        batch_size=1,
                        optimizer='sgd',
                        weight_regularizer=reg)

    start = time.time()
    clf.fit(np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)),
            y_train)
    learning_time = time.time() - start

    print([len(x) for x in clf.shapelets_])
    print(clf.get_weights())

    print('Learning shapelets took {}s'.format(learning_time))

    with open(shap_out_path, 'w+') as ofp:
        for shap in clf.shapelets_:
            ofp.write(str(np.reshape(shap, (-1))) + '\n')

    with open(timing_out_path, 'w+') as ofp:
        ofp.write(str(learning_time))

    X_distances_train = clf.transform(X_train)
    X_distances_test = clf.transform(X_test)

    fit_lr(X_distances_train, y_train, X_distances_test, y_test, pred_out_path)
Exemplo n.º 2
0
def test_shapelets():
    pytest.importorskip('keras')
    from tslearn.shapelets import ShapeletModel

    n, sz, d = 15, 10, 2
    rng = np.random.RandomState(0)
    time_series = rng.randn(n, sz, d)
    y = rng.randint(2, size=n)
    clf = ShapeletModel(n_shapelets_per_size={2: 5},
                        max_iter=1,
                        verbose=0,
                        optimizer="sgd",
                        random_state=0)
    clf.fit(time_series, y)
    np.testing.assert_allclose(clf.shapelets_[0],
                               np.array([[0.56373, 0.494684],
                                         [1.235707, 1.119235]]),
                               atol=1e-2)
    np.testing.assert_allclose(clf.predict(time_series),
                               np.array([0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0,
                                         1, 0]))

    cross_validate(clf, time_series, y, cv=2)

    model = ShapeletModel(n_shapelets_per_size={3: 2, 4: 1},
                          max_iter = 1)
    model.fit(time_series, y)
    for shp, shp_bis in zip(model.shapelets_,
                            model.shapelets_as_time_series_):
        np.testing.assert_allclose(shp,
                                   to_time_series(shp_bis, remove_nans=True))

    # Test set_weights / get_weights
    clf = ShapeletModel(n_shapelets_per_size={2: 5},
                        max_iter=1,
                        verbose=0,
                        random_state=0)
    clf.fit(time_series, y)
    preds_before = clf.predict_proba(time_series)
    weights = clf.get_weights()
    # Change number of iterations, then refit, then set weights
    clf.max_iter *= 2
    clf.fit(time_series, y)
    clf.set_weights(weights)
    np.testing.assert_allclose(preds_before,
                               clf.predict_proba(time_series))
Exemplo n.º 3
0
def test_shapelets():
    pytest.importorskip('tensorflow')
    from tslearn.shapelets import ShapeletModel
    import tensorflow as tf

    n, sz, d = 15, 10, 2
    rng = np.random.RandomState(0)
    time_series = rng.randn(n, sz, d)
    y = rng.randint(2, size=n)
    clf = ShapeletModel(n_shapelets_per_size={2: 5},
                        max_iter=1,
                        verbose=0,
                        optimizer="sgd",
                        random_state=0)

    cross_validate(clf, time_series, y, cv=2)

    clf = ShapeletModel(n_shapelets_per_size={2: 5},
                        max_iter=1,
                        verbose=0,
                        optimizer=tf.optimizers.Adam(.1),
                        random_state=0)
    cross_validate(clf, time_series, y, cv=2)

    model = ShapeletModel(n_shapelets_per_size={3: 2, 4: 1}, max_iter=1)
    model.fit(time_series, y)
    for shp, shp_bis in zip(model.shapelets_,
                            model.shapelets_as_time_series_):
        np.testing.assert_allclose(shp,
                                   to_time_series(shp_bis, remove_nans=True))

    # Test set_weights / get_weights
    clf = ShapeletModel(n_shapelets_per_size={2: 5},
                        max_iter=1,
                        verbose=0,
                        random_state=0)
    clf.fit(time_series, y)
    preds_before = clf.predict_proba(time_series)
    weights = clf.get_weights()
    # Change number of iterations, then refit, then set weights
    clf.max_iter *= 2
    clf.fit(time_series, y)
    clf.set_weights(weights)
    np.testing.assert_allclose(preds_before,
                               clf.predict_proba(time_series))