Exemplo n.º 1
0
 def __init__(self, tumor_seq, tsp_list, mao_file):
     Align = MegaAlignment()
     self.tumor_list, self.tumor2seq = Align.name2seq(tumor_seq)
     self.Len = len(self.tumor2seq[self.tumor_list[0]])
     self.mao_file = mao_file
     self.tsp_list = tsp_list
     TSPinfo = tsp_information(tsp_list)
     self.Tu2SNV = TSPinfo.tumor2alt_frequency()
 def __init__(self, ini_seq_builder, tsp_list, clone_frequencies, CNV,
              freq_cutoff):
     self.tsp_list = tsp_list
     self.freq_cutoff = freq_cutoff
     self.Tu2CloFre = clone_frequencies
     self.all_tsp = tsp_information(tsp_list)
     self.CloFreCutOff = self.freq_cutoff
     self.v_obs = self.all_tsp.tumor2alt_frequency()
     Align = MegaAlignment()
     self.clone_order, self.clone_seq = Align.name2seq(ini_seq_builder)
     self._CNV_file = CNV
    def __init__(self, cluster_information, original_seq, tumor_seq, tsp_list,
                 clone_frequency_cutoff, CNV_info, ReadCountTable):
        self.Tu2Cluster = cluster_information
        self.CNV_info = CNV_info
        self.ReadCountTable = ReadCountTable
        Align = MegaAlignment()
        self.OriAncOrder, self.OriAnc2Seq0 = Align.name2seq(original_seq)
        self.TOrder, self.T2Seq = Align.name2seq(tumor_seq)
        self.SharePosi = Align.GetSharePosi1(self.OriAnc2Seq0, 'T')
        self.all_tsp = tsp_information(tsp_list)
        self.CloFreCutOff = clone_frequency_cutoff
        self.v_obs = self.all_tsp.tumor2alt_frequency()
        identical_seq_list = Align.identify_similar_seq(tumor_seq, 0)
        self.identical_seq = Align.make_similar_seq_dic(identical_seq_list)

        self.freq_cutoff = self.CloFreCutOff
Exemplo n.º 4
0
    def add_back_CNVSNV(self, DecomTu2Seq_builder_sub, CNV_information,
                        original_seqs_builder_all,
                        original_Tumor2Clone_frequency, tsp_list):
        all_tsp = tsp_information(tsp_list)
        v_obs = all_tsp.tumor2alt_frequency()
        Seq_all_dic = {}
        Align = MegaAlignment()
        Original_clols, Original_clodic_all = Align.name2seq(
            original_seqs_builder_all)
        for Tumor in DecomTu2Seq_builder_sub:
            Seq_builder_sub = DecomTu2Seq_builder_sub[Tumor]
            if Seq_builder_sub != []:
                SNVfre_list = v_obs[Tumor]
                CloLs, Clo2Seq = Align.name2seq(Seq_builder_sub)
                CNVinfo = CNV_information[Tumor]
                Len = len(CNVinfo)
                #  print Tumor, Clo2Seq.keys()
                for Clo in Clo2Seq:
                    Seq_sub = Clo2Seq[Clo]
                    c_seq = 0
                    c_all = 0
                    Seq_all = ''
                    while c_all < Len:
                        if CNVinfo[c_all] == 'normal':
                            Seq_all += Seq_sub[c_seq]
                            c_seq += 1
                        else:
                            if SNVfre_list[c_all] == 0: Seq_all += 'A'
                            else: Seq_all += '?'
                        c_all += 1
                    if Original_clodic_all.has_key(Clo) == True:
                        Seq_all_dic[Clo] = Original_clodic_all[Clo]
                    else:
                        Seq_all_dic[Clo] = Seq_all
            else:
                CloFre = original_Tumor2Clone_frequency['T-' + Tumor]

                for Clo in CloFre:
                    if CloFre[Clo] > 0:
                        if Seq_all_dic.has_key('#' + Clo) != True:
                            Seq_all_dic['#' + Clo] = Original_clodic_all['#' +
                                                                         Clo]

        decom_all_seq_builder = Align.UpMeg(Seq_all_dic, [])

        return decom_all_seq_builder
Exemplo n.º 5
0
    def BranchDecClone(self, seq_list, clone_frequency, Tu2CNV):
        Align = MegaAlignment()
        TumorSampleExtract = tsp_information(self.tsp_list)
        CloFreAna = CloneFrequencyAnalizer()
        CloOrder, Clo2Seq = Align.name2seq(seq_list)
        Align.save_mega_alignment_to_file('Test.meg', seq_list)
        tree_builder = MegaMP()
        tree_builder.mao_file = self.mao_file
        id = 'branchdec_mega_alignment'

        status = tree_builder.do_mega_mp(seq_list, id)
        if status == True:
            seqs_with_ancestor, tree, nade_map, mask_seq, Good_posi_info = tree_builder.alignment_least_back_parallel_muts(
                True
            )  # True will execute code to remove redundant seqs (True is default)
        else:
            print 'failed to run megaMP'
        BadPosiLs = []  #multiple mutations
        BadPosi2ChnageCloLs = {}
        for c in Good_posi_info:
            Posi_Inf = Good_posi_info[c]
            if Posi_Inf != ['Good']:
                if Posi_Inf[0] == 'ToWild':
                    BadPosiLs.append(c)
                    BadPosi2ChnageCloLs[c] = Posi_Inf[1][0]
        print 'bad positions', BadPosiLs  #,BadPosi2ChnageCloLs
        if BadPosiLs != []:
            NewT2C2F = {}
            NewT2Cls = {}
            for Tu in clone_frequency:
                NewC2F = {}
                single_tsp_list = TumorSampleExtract.make_single_tsp_list(Tu)
                CloFreDic = clone_frequency[Tu]
                CNV = Tu2CNV[Tu[2:]]
                Tu = Tu[2:]
                TuSeq = self.tumor2seq['#' + Tu]
                NewCloLs = []
                NewCloLs1 = []

                for Clo in CloFreDic:  #original hit clo for the tumor
                    ChangeOptions = 'n'
                    #   print Tu,CloFreDic
                    if CloFreDic[Clo] > 0:
                        CSeq0 = Clo2Seq['#' + Clo]
                        ChangePosi = []  #list to fix multiple mutaitons
                        NewBadPosi = [
                        ]  #remove fixed multiple mutations from BadExtMutPosi
                        for Bad in BadPosi2ChnageCloLs:
                            if BadPosi2ChnageCloLs[Bad].count(
                                    '#' + Clo) != 0 and (CNV[Bad] == 'normal'
                                                         or CNV[Bad]
                                                         == 'Bad-normal'):
                                Change = 'n'
                                for Oth in CloFreDic:  #find multiple mutations at the external branch
                                    if Oth != Clo and CloFreDic[Oth] > 0:
                                        Soth = Clo2Seq['#' + Oth]
                                        if Soth[Bad] == 'T' and BadPosi2ChnageCloLs[
                                                Bad].count('#' + Oth) == 0:
                                            Change = 'y'
                                if Change == 'y':
                                    ChangePosi.append(Bad)
                                else:
                                    NewBadPosi.append(Bad)
                        print 'change positions', Tu, ChangePosi
                        if ChangePosi != []:  #fix multiple mutaitons
                            #  print 'hhh'
                            CutCloSeq = Align.ModSeq(CSeq0, ChangePosi, 'A',
                                                     self.Len)
                            NewCloLs.append(Clo + 'Cut' + Tu)
                            NewC2F[Clo + 'Cut' + Tu] = CloFreDic[Clo]
                            Clo2Seq['#' + Clo + 'Cut' + Tu] = CutCloSeq
                            ChangeOptions = 'y'

                    if ChangeOptions == 'n':
                        NewC2F[Clo] = 1
                NewT2C2F[Tu] = NewC2F

    #  print Clo2Seq
            hitseq_align, hitclone_frequency = CloFreAna.ListHitCloAndSeq(
                NewT2C2F, Clo2Seq)
            outSeqMaj, outSeqAmb, NewT2C2F = Align.CombSimClo(
                hitseq_align, hitclone_frequency, 0.0)
            #   print outSeqMaj, NewT2C2F
            return outSeqMaj, NewT2C2F
        else:
            return seq_list, clone_frequency
Exemplo n.º 6
0
AnalyzeTree = TreeAnalizer()
OutFile = OutputWrite()
Align = MegaAlignment()
CloFreAna = CloneFrequencyAnalizer()
Format = FormatInput()

if parser.parse() == False:
    print(parser.messages)
else:
    tsp_list = parser.get_tumor_sample_profile_list()
    CNV_information = parser_cnv.get_tumor_cnv_profile(params.cnv_data_file)
    original_align_builder = FreqToMegaSeq()
    original_align_builder.initialize(
        tsp_list, True)  #True to remove duplicates; False to keep duplicates
    num_sites = tsp_list.num_read_counts()
    all_tsp = tsp_information(tsp_list)
    v_obs = all_tsp.tumor2alt_frequency()
    total_read, alt_read, ReadCount_table = all_tsp.tumor2read_count()
    tumor_seqs = original_align_builder.get_mega_allalignment()
    initial_seq0 = original_align_builder.get_mega_alignment()
    initial_seq, A1, A2 = OutFile.ReNameCloFreMeg(initial_seq0, {}, 'number')
    CNV_information_test = Format.add_low_quality_SNV_info(
        CNV_information, total_read, alt_read, total_read_cut, mutant_read_cut)
    print('add initial ancestor')
    id = 'mega_alignment'  # id will be used internally for file names
    status = tree_builder.do_mega_mp(initial_seq, id)
    if status != True:
        print(
            'CloneFinder cannot make inferences, because samples do not have evolutionary structure.'
        )
    else: