Exemplo n.º 1
0
def oudin_form(
    lat: FloatLatitude,
    temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    k1=100,
    k2=5,
    source_units=None,
    input_ts="-",
    start_date=None,
    end_date=None,
    dropna="no",
    clean=False,
    round_index=None,
    skiprows=None,
    index_type="datetime",
    names=None,
    target_units=None,
    print_input=False,
):
    """oudin form"""
    temp_min_required = False
    temp_max_required = False
    tsd = _preprocess(
        input_ts,
        temp_min_col,
        temp_max_col,
        temp_mean_col,
        temp_min_required,
        temp_max_required,
        skiprows,
        names,
        index_type,
        start_date,
        end_date,
        round_index,
        dropna,
        clean,
        source_units,
    )

    newra = utils.radiation(tsd, lat)

    # Create new dataframe with tsd.index as index in
    # order to get all of the time components correct.
    pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_oudin:mm"])

    gamma = 2.45  # the latent heat flux (MJ kg−1)
    rho = 1000.0  # density of water (kg m-3)

    pe.loc[tsd.tmean > k2, "pet_oudin:mm"] = (
        newra.ra / (gamma * rho) * (tsd.tmean + k2) / k1 * 1000
    )

    if target_units != source_units:
        pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units)
    return tsutils.return_input(print_input, tsd, pe)
Exemplo n.º 2
0
def hamon(
    lat: FloatLatitude,
    temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    k: float = 1,
    source_units=None,
    input_ts="-",
    start_date=None,
    end_date=None,
    dropna="no",
    clean=False,
    round_index=None,
    skiprows=None,
    index_type="datetime",
    names=None,
    target_units=None,
    print_input=False,
):
    """hamon"""
    temp_min_required = True
    temp_max_required = True
    tsd = _preprocess(
        input_ts,
        temp_min_col,
        temp_max_col,
        temp_mean_col,
        temp_min_required,
        temp_max_required,
        skiprows,
        names,
        index_type,
        start_date,
        end_date,
        round_index,
        dropna,
        clean,
        source_units,
    )

    decl = [declination(i) for i in tsd.index.to_pydatetime()]

    w = np.arccos(-np.tan(decl) * np.tan(lat))

    es = meteolib.es_calc(tsd.tmean)

    N = 24 * w / np.pi

    # Create new dataframe with tsd.index as index in
    # order to get all of the time components correct.
    pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_hamon:mm"])
    pe["pet_hamon:mm"] = k * 29.8 * N * es / (273.3 + tsd.tmean)
    pe.loc[tsd.tmean <= 0, "pet_hamon:mm"] = 0.0

    if target_units != source_units:
        pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units)
    return tsutils.return_input(print_input, tsd, pe)
Exemplo n.º 3
0
def hargreaves(
    lat: FloatLatitude,
    temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    source_units=None,
    input_ts="-",
    start_date=None,
    end_date=None,
    dropna="no",
    clean=False,
    round_index=None,
    skiprows=None,
    index_type="datetime",
    names=None,
    target_units="mm",
    print_input=False,
):
    """hargreaves"""
    temp_min_required = True
    temp_max_required = True
    tsd = _preprocess(
        input_ts,
        temp_min_col,
        temp_max_col,
        temp_mean_col,
        temp_min_required,
        temp_max_required,
        skiprows,
        names,
        index_type,
        start_date,
        end_date,
        round_index,
        dropna,
        clean,
        source_units,
    )

    newra = utils.radiation(tsd, lat)

    tsdiff = tsd.tmax - tsd.tmin

    # Create new dataframe with tsd.index as index in
    # order to get all of the time components correct.
    pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_hargreaves:mm"])

    pe["pet_hargreaves:mm"] = (
        0.408
        * 0.0023
        * newra.ra.values
        * np.abs(tsdiff.values) ** 0.5
        * (tsd.tmean.values + 17.8)
    )
    if target_units != source_units:
        pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units)
    return tsutils.return_input(print_input, tsd, pe)
Exemplo n.º 4
0
def precipitation(
    method: Literal["equal", "cascade", "masterstation"],
    source_units,
    input_ts="-",
    start_date=None,
    end_date=None,
    dropna="no",
    clean=False,
    round_index=None,
    skiprows=None,
    index_type="datetime",
    names=None,
    target_units=None,
    print_input=False,
    columns=None,
    masterstation_hour_col: Optional[Union[tsutils.IntGreaterEqualToOne,
                                           str]] = None,
):
    """Disaggregate daily to hourly data."""
    target_units = single_target_units(source_units, target_units, "mm")

    pd.options.display.width = 60

    tsd = tsutils.common_kwds(
        tsutils.read_iso_ts(input_ts,
                            skiprows=skiprows,
                            names=names,
                            index_type=index_type),
        start_date=start_date,
        end_date=end_date,
        pick=columns,
        round_index=round_index,
        dropna=dropna,
        source_units=source_units,
        target_units=target_units,
        clean=clean,
    )

    if method == "masterstation":
        try:
            # If masterstations_hour_col is a column name:
            masterstation_hour_col = tsd.columns.get_loc(
                masterstation_hour_col)
        except KeyError:
            # If masterstations_hour_col is a column number:
            masterstation_hour_col = int(masterstation_hour_col) - 1

        masterstation_hour_col = tsd.columns[masterstation_hour_col]

        # Should only be one hourly column in the input.
        mhour = tsd[masterstation_hour_col].to_frame()
        dsum = mhour.groupby(pd.Grouper(freq="D")).sum().asfreq("H",
                                                                method="ffill")
        master = mhour.join(dsum, rsuffix="sum")
        mask = master.iloc[:, 0] > 0.0
        master = (master.loc[mask, master.columns[0]] /
                  master.loc[mask, master.columns[1]]).to_frame()
        print(master)
        ntsd = tsd.loc[:, tsd.columns != masterstation_hour_col].asfreq(
            "H", method="ffill")
        print(ntsd)
        ntsd = ntsd.join(master)
        print(ntsd)
        ntsd = ntsd.loc[:, tsd.columns != masterstation_hour_col].multiply(
            ntsd.iloc[:, -1:], axis="index")
        print(ntsd)
        sys.exit()
        # All the remaining columns are daily.
        ntsd = (tsd.loc[:, tsd.columns != masterstation_hour_col].asfreq(
            "H", method="ffill").mul(master, axis="rows"))

    return tsutils.return_input(print_input, tsd, ntsd)
Exemplo n.º 5
0
def temperature(
    method: Literal["sine_min_max", "sine_mean", "sine", "mean_course_min_max",
                    "mean_course_mean"],
    source_units,
    min_max_time: Literal["fix", "sun_loc", "sun_loc_shift"] = "fix",
    mod_nighttime: bool = False,
    input_ts="-",
    start_date=None,
    end_date=None,
    dropna="no",
    clean=False,
    round_index=None,
    skiprows=None,
    index_type="datetime",
    names=None,
    print_input=False,
    target_units=None,
    max_delta: bool = False,
    temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None,
    lat: Optional[FloatLatitude] = None,
    lon: Optional[FloatLongitude] = None,
    hourly: Optional[str] = None,
):
    """Disaggregate daily to hourly data.

    disaggregate_temperature(data_daily,
                             method='sine_min_max',
                             min_max_time='fix',
                             mod_nighttime=False,
                             max_delta=None,
                             mean_course=None,
                             sun_times=None):

    data_daily :      daily data
    method :          method to disaggregate
    min_max_time:     "fix" - min/max temperature at fixed times 7h/14h,
                      "sun_loc" - min/max calculated by sunrise/sunnoon + 2h,
                      "sun_loc_shift" - min/max calculated by sunrise/sunnoon +
                                        monthly mean shift,
    mod_nighttime:    ?
    max_delta:        maximum monthly temperature shift as returned by
                      get_shift_by_data()
    mean_course:      ?
    sun_times:        times of sunrise/noon as returned by get_sun_times()

    if method in ('sine_min_max', 'sine_mean', 'sine')
        .tmin from temp_min_col
        .tmax from temp_max_col
        .temp from temp_mean_col

    if method in ('mean_course_min', 'mean_course_mean')
        .tmin from temp_min_col
        .tmax from temp_max_col
        require hourly temperature perhaps from nearby station in 'mean_course'

    if method == 'mean_course_mean'
        .temp from temp_mean_col

    sun_times = get_sun_times(dates, lon, lat, round(lon/15.0))

    max_delta = get_shift_by_data(temp_hourly, lon, lat, round(lon/15.0))
    """
    target_units = single_target_units(source_units, target_units, "degC")

    pd.options.display.width = 60

    if (method in ["mean_course_min", "mean_course_mean"]
            or max_delta is True) and hourly is None:
        raise ValueError(
            tsutils.error_wrapper("""
The methods "mean_course_min", "mean_course_mean", or if `max_delta` is
True, require a HOURLY temperature values in the CSV file specified by the
keyword `hourly`."""))

    if method in ["mean_course_min", "mean_course_mean"] or max_delta is True:
        hourly = tstoolbox.read(hourly)

    if max_delta is True:
        max_delta = get_shift_by_data(hourly, lon, lat, round(lon / 15.0))
    else:
        max_delta = None

    if temp_min_col is None or temp_max_col is None:
        raise ValueError(
            tsutils.error_wrapper("""
For "temperature" disaggregation you need to supply the daily minimum
column (name or number, data column numbering starts at 1) and the daily
maximum column (name or number).

Instead `temp_min_col` is {temp_min_col} and `temp_max_col` is
{temp_max_col}""".format(**locals())))

    columns = []
    try:
        temp_min_col = int(temp_min_col)
    except TypeError:
        pass
    columns.append(temp_min_col)

    try:
        temp_max_col = int(temp_max_col)
    except TypeError:
        pass
    columns.append(temp_max_col)

    if temp_mean_col is not None:
        try:
            temp_mean_col = int(temp_mean_col)
        except TypeError:
            pass
        columns.append(temp_mean_col)

    tsd = tsutils.common_kwds(
        tsutils.read_iso_ts(input_ts,
                            skiprows=skiprows,
                            names=names,
                            index_type=index_type),
        start_date=start_date,
        end_date=end_date,
        pick=columns,
        round_index=round_index,
        dropna=dropna,
        source_units=source_units,
        target_units=target_units,
        clean=clean,
    )

    if len(tsd.columns) == 3:
        tsd.columns = ["tmin", "tmax", "temp"]
    else:
        tsd.columns = ["tmin", "tmax"]

    if any((tsd.tmax <= tsd.tmin).dropna()):
        raise ValueError(
            tsutils.error_wrapper("""
On the following dates:

{0},

minimum temperature values in column "{1}" are greater than or equal to
the maximum temperature values in column "{2}".""".format(
                tsd[tsd.tmax <= tsd.tmin].index, temp_min_col, temp_max_col)))

    if temp_mean_col is None:
        warnings.warn(
            tsutils.error_wrapper("""
Since `temp_mean_col` is None, the average daily temperature will be
estimated by the average of `temp_min_col` and `temp_max_col`""".format(
                **locals())))
        tsd["temp"] = (tsd.tmin + tsd.tmax) / 2.0

        if any((tsd.tmin >= tsd.temp).dropna()) or any(
            (tsd.tmax <= tsd.temp).dropna()):
            raise ValueError(
                tsutils.error_wrapper("""
On the following dates:

{0},

the daily average is either below or equal to the minimum temperature in column {1}
or higher or equal to the maximum temperature in column {2}.""".format(
                    tsd[tsd.tmin >= tsd.temp | tsd.tmax <= tsd.temp],
                    temp_min_col,
                    temp_max_col,
                )))

    if min_max_time == "fix":
        # Not dependent on sun, just average values.
        sun_times = pd.DataFrame(
            index=[1], columns=["sunrise", "sunnoon", "sunset", "daylength"])
        sun_times.sunrise = 7
        sun_times.sunnoon = 12
        sun_times.sunset = 19
        sun_times.daylength = 12
    else:
        if lat is None or lon is None:
            raise ValueError(
                tsutils.error_wrapper("""
The `min_max_time` options other than "fix" require calculation of
sunrise, sun noon, sunset, and day length.  The calculation requires the
latitude with keyword "lat" and longitude with keyword "lon".
You gave:

    lat={lat}

    lon={lon}
""".format(**locals())))

        sun_times = get_sun_times(tsd.index, float(lon), float(lat),
                                  round(lon / 15.0))

    ntsd = pd.DataFrame(
        disaggregate_temperature(
            tsd,
            method=method,
            min_max_time=min_max_time,
            mod_nighttime=mod_nighttime,
            max_delta=max_delta,
            mean_course=hourly,
            sun_times=sun_times,
        ))

    ntsd.columns = ["temperature:{0}:disagg".format(target_units[0])]

    return tsutils.return_input(print_input, tsd, ntsd)
Exemplo n.º 6
0
def radiation(
    method: Literal["pot_rad", "pot_rad_via_ssd", "pot_rad_via_bc",
                    "mean_course"],
    source_units,
    input_ts="-",
    columns=None,
    start_date=None,
    end_date=None,
    dropna="no",
    clean=False,
    round_index=None,
    skiprows=None,
    index_type="datetime",
    names=None,
    target_units=None,
    print_input=False,
    pot_rad=None,
    angstr_a=0.25,
    angstr_b=0.5,
    bristcamp_a=0.75,
    bristcamp_c=2.4,
    hourly_rad=None,
    lat=None,
    lon=None,
    glob_swr_col=None,
):
    """Disaggregate daily to hourly data.

    disaggregate_radiation(data_daily,
                           sun_times=None,
                           pot_rad=None,
                           method='pot_rad',
                           angstr_a=0.25,
                           angstr_b=0.5,
                           bristcamp_a=0.75,
                           bristcamp_c=2.4,
                           mean_course=None):
    Args:
        daily_data: daily values
        sun_times: daily dataframe including results of the util.sun_times function
        pot_rad: hourly dataframe including potential radiation
        method: keyword specifying the disaggregation method to be used
        angstr_a: parameter a of the Angstrom model (intercept)
        angstr_b: parameter b of the Angstrom model (slope)
        bristcamp_a: ?
        bristcamp_c: ?
        mean_course: monthly values of the mean hourly radiation course

    if method == 'mean_course':
        HOURLY radiation in "mean_course"

    if method in ('pot_rad', 'mean_course')
        .glob from glob_swr_col

    if method == 'pot_rad_via_ssd'
        daily sun_times

    if method == 'pot_rad_via_bc'
        bristcamp_a
        bristcamp_c
    """
    target_units = single_target_units(source_units, target_units, "W/m2")

    target_units = target_units[0] * len(source_units)

    pd.options.display.width = 60

    if method == "mean_course" and hourly_rad is None:
        raise ValueError(
            tsutils.error_wrapper("""
If method is "mean_course" need to supply CSV filename of hourly
radiation by the `hourly_rad` keyword."""))

    if method in ["pot_rad", "mean_course"] and glob_swr_col is None:
        raise ValueError(
            tsutils.error_wrapper("""
If method is "pot_rad" or "mean_course" need to supply the daily global
short wave radiation as column name or index with keyword
`glob_swr_col`"""))

    if method == "pot_rad_via_bc" and (bristcamp_a is None
                                       or bristcamp_c is None):
        raise ValueError(
            tsutils.error_wrapper("""
If method is "pot_rad_via_bc" need to supply the keywords `bristcamp_a`
and `bristcamp_c`."""))

    tsd = tsutils.common_kwds(
        tsutils.read_iso_ts(input_ts,
                            skiprows=skiprows,
                            names=names,
                            index_type=index_type),
        start_date=start_date,
        end_date=end_date,
        pick=columns,
        round_index=round_index,
        dropna=dropna,
        source_units=source_units,
        target_units=target_units,
        clean=clean,
    )

    if method in ["pot_rad", "mean_course"]:
        try:
            glob_swr_col = glob_swr_col - 1
        except ValueError:
            pass
        tsd["glob"] = tsd[glob_swr_col]

    sun_times = None
    if method == "pot_rad_via_ssd":
        sun_times = get_sun_times(tsd.index, float(lon), float(lat),
                                  round(lon / 15.0))

    return tsutils.return_input(
        print_input,
        tsd,
        pd.DataFrame(
            disaggregate_radiation(
                tsd,
                sun_times=sun_times,
                pot_rad=pot_rad,
                method=method,
                angstr_a=angstr_a,
                angstr_b=angstr_b,
                bristcamp_a=bristcamp_a,
                bristcamp_c=bristcamp_c,
                mean_course=hourly_rad,
            )),
    )
Exemplo n.º 7
0
def wind_speed(
    method: Literal["equal", "cosine", "random"],
    source_units,
    input_ts="-",
    columns=None,
    start_date=None,
    end_date=None,
    dropna="no",
    clean=False,
    round_index=None,
    skiprows=None,
    index_type="datetime",
    names=None,
    target_units=None,
    print_input=False,
    a=None,
    b=None,
    t_shift=None,
):
    """Disaggregate daily to hourly data.
    disaggregate_wind(wind_daily,
                      method='equal',
                      a=None,
                      b=None,
                      t_shift=None):

    Args:
        wind_daily: daily values
        method: keyword specifying the disaggregation method to be used
        a: parameter a for the cosine function
        b: parameter b for the cosine function
        t_shift: parameter t_shift for the cosine function
    """
    target_units = single_target_units(source_units, target_units, "m/s")

    target_units = target_units[0] * len(source_units)

    pd.options.display.width = 60

    if method == "cosine" and (a is None or b is None or t_shift is None):
        raise ValueError(
            tsutils.error_wrapper("""
For the "cosine" method, requires the `a`, `b`, and `t_shift`
keywords.  You gave:

a = {a}

b = {b}

t_shift = {t_shift}
""".format(**locals())))
    tsd = tsutils.common_kwds(
        tsutils.read_iso_ts(input_ts,
                            skiprows=skiprows,
                            names=names,
                            index_type=index_type),
        start_date=start_date,
        end_date=end_date,
        pick=columns,
        round_index=round_index,
        dropna=dropna,
        source_units=source_units,
        target_units=target_units,
        clean=clean,
    )

    return tsutils.return_input(
        print_input,
        tsd,
        pd.DataFrame(
            disaggregate_wind(tsd, method=method, a=a, b=b, t_shift=t_shift)),
    )
Exemplo n.º 8
0
def humidity(
    method: Literal["equal", "minimal", "dewpoint_regression",
                    "linear_dewpoint_variation", "min_max",
                    "month_hour_precip_mean", ],
    source_units,
    input_ts="-",
    columns=None,
    start_date=None,
    end_date=None,
    dropna="no",
    clean=False,
    round_index=None,
    skiprows=None,
    index_type="datetime",
    names=None,
    target_units=None,
    print_input=False,
    hum_min_col=None,
    hum_max_col=None,
    hum_mean_col=None,
    temp_min_col=None,
    temp_max_col=None,
    a0=None,
    a1=None,
    kr=None,
    hourly_temp=None,
    preserve_daily_mean=None,
):
    """Disaggregate daily humidity to hourly humidity data.

    disaggregate_humidity(data_daily, method='equal', temp=None,
                          a0=None, a1=None, kr=None,
                          month_hour_precip_mean=None, preserve_daily_mean=False):
    Args:
        daily_data: daily values
        method: keyword specifying the disaggregation method to be used
        temp: hourly temperature time series (necessary for some methods)
        kr: parameter for linear_dewpoint_variation method (6 or 12)
        month_hour_precip_mean: [month, hour, precip(y/n)] categorical mean values
        preserve_daily_mean: if True, correct the daily mean values of the disaggregated
            data with the observed daily means.


    if method=equal
        .hum from hum_mean_col
    if method in ["minimal", "dewpoint_regression", "linear_dewpoint_variation"]
        .tmin from temp_min_col
    if method=min_max need
        .hum_min from hum_min_col
        .hum_max from hum_max_col
        .tmin from temp_min_col
        .tmax from temp_max_col

    if method in ["dewpoint_regression", "linear_dewpoint_variation"]
        a0
        a1
    if method in ["linear_dewpoint_variation"]
        kr

    if preserve_daily_mean is True
        .hum from hum_mean_col

    if method in ["minimal",
                  "dewpoint_regression",
                  "linear_dewpoint_variation",
                  "min_max"]
        need HOURLY temperature in 'temp'
    """
    target_units = single_target_units(source_units, target_units, "")

    if method == "equal" and hum_mean_col is None:
        raise ValueError(
            tsutils.error_wrapper("""
If `method` is "equal" then the mean daily humidity is a required column
identified with the keyword `hum_mean_col`"""))

    if (method
            in ["minimal", "dewpoint_regression", "linear_dewpoint_variation"]
            and temp_min_col is None):
        raise ValueError(
            tsutils.error_wrapper("""
If `method` is "minimal", "dewpoint_regression", or
"linear_dewpoint_variation" then the minimum daily temperature is a required
column identified with the keyword `temp_min_col`."""))

    if method == "min_max" and (hum_min_col is None or hum_max_col is None or
                                temp_min_col is None or temp_max_col is None):
        raise ValueError(
            tsutils.error_wrapper("""
If `method` is "min_max" then:

Minimum daily humidity is a required column identified with the keyword
`hum_min_col`.  You gave {hum_min_col}.

Maximum daily humidity is a required column identified with the keyword
`hum_max_col`.  You gave {hum_max_col}.

Minimum daily temperature is a required column identified with the
keyword `temp_min_col`.  You gave {temp_min_col}.

Maximum daily temperature is a required column identified with the
keyword `temp_max_col`.  You gave {temp_max_col}.
""".format(**locals())))

    if method in ["dewpoint_regression", "linear_dewpoint_variation"
                  ] and (a0 is None or a1 is None):
        raise ValueError(
            tsutils.error_wrapper("""
If `method` is "dewpoint_regression" or "linear_dewpoint_variation" then
a0 and a1 must be given."""))

    if method == "linear_dewpoint_variation" and kr is None:
        raise ValueError(
            tsutils.error_wrapper("""
If `method` is "linear_dewpoint_variation" then kr must be given"""))

    if (method in [
            "minimal",
            "dewpoint_regression",
            "linear_dewpoint_variation",
            "min_max",
            "month_hour_precip_mean",
    ] and hourly_temp is None):
        raise ValueError(
            tsutils.error_wrapper("""
If `method` is "minimal", "dewpoint_regression",
"linear_dewpoint_variation", or "min_max" then hourly temperature is
required identified by the filename in keyword `hourly_temp`."""))

    pd.options.display.width = 60

    tsd = tsutils.common_kwds(
        tsutils.read_iso_ts(input_ts,
                            skiprows=skiprows,
                            names=names,
                            index_type=index_type),
        start_date=start_date,
        end_date=end_date,
        pick=columns,
        round_index=round_index,
        dropna=dropna,
        source_units=source_units,
        target_units=target_units,
        clean=clean,
    )

    if method == "equal":
        tsd["hum"] = tsd["hum_mean_col"]

    if method in [
            "minimal", "dewpoint_regression", "linear_dewpoint_variation"
    ]:
        tsd["tmin"] = tsd["temp_min_col"]

    if method == "min_max":
        tsd["hum_min"] = tsd["hum_min_col"]
        tsd["hum_max"] = tsd["hum_max_col"]
        tsd["tmin"] = tsd["temp_min_col"]
        tsd["tmax"] = tsd["temp_max_col"]

    if preserve_daily_mean is not None:
        tsd["hum"] = tsd[preserve_daily_mean]
        preserve_daily_mean = True

    if method in [
            "minimal",
            "dewpoint_regression",
            "linear_dewpoint_variation",
            "min_max",
            "month_hour_precip_mean",
    ]:
        hourly_temp = tstoolbox.read(hourly_temp)

    if method == "month_hour_precip_mean":
        month_hour_precip_mean = calculate_month_hour_precip_mean(hourly_temp)

    ntsd = pd.DataFrame(
        disaggregate_humidity(
            tsd,
            method=method,
            temp=hourly_temp,
            a0=a0,
            a1=a1,
            kr=kr,
            preserve_daily_mean=preserve_daily_mean,
            month_hour_precip_mean=month_hour_precip_mean,
        ))

    ntsd.columns = ["humidity:{0}:disagg"]

    return tsutils.return_input(print_input, tsd, ntsd)