Exemplo n.º 1
0
class FeatureDataset(Dataset):
    def __init__(self, phase):
        if phase == "train":
            self.tsv_path = TRAIN_PATH
        elif phase == 'val':
            self.tsv_path = VAL_PATH
        else:
            self.tsv_path = TEST_PATH

        self.tsv = TSVFile(self.tsv_path)

    def __getitem__(self, idx):
        row = self.tsv.seek(idx)

        # ginfo = row[0]
        glabel = row[0]
        actions = row[1][1:-1].split(',')
        actions = map(int, actions)
        features = json.loads(row[2])

        person_features = []
        for pid in features:
            person_feature = np.array(features[pid])
            person_features.append(person_feature)

        return person_features, actions, glabel
        # return person_features, actions, glabel, ginfo

    def __len__(self):
        return self.tsv.num_rows()
Exemplo n.º 2
0
    def __init__(self, phase):
        self.phase = phase
        if phase == "trainval":
            self.tsv_path = TRAINVAL_PATH
        else:
            self.tsv_path = TEST_PATH

        self.tsv = TSVFile(self.tsv_path)
    def __init__(self, phase):
        if phase == "train":
            self.tsv_path = TRAIN_PATH
        elif phase == 'val':
            self.tsv_path = VAL_PATH
        else:
            self.tsv_path = TEST_PATH

        self.tsv = TSVFile(self.tsv_path)
Exemplo n.º 4
0
    def __init__(self, phase):
        self.phase = phase
        self.image_path = "../dataset/Volleyball/videos/"
        if phase == "trainval":
            self.tsv_path = TRAINVAL_PATH
        else:
            self.tsv_path = TEST_PATH

        self.tsv = TSVFile(self.tsv_path)
Exemplo n.º 5
0
 def __init__(self, tsv_file, labelmap, transform=None):
     from tsv_io import TSVFile
     from qd_common import load_list_file
     self._tsv = TSVFile(tsv_file)
     self._label_to_idx = {
         l: i
         for i, l in enumerate(load_list_file(labelmap))
     }
     self.transform = transform
     self.ids = None
Exemplo n.º 6
0
class TSVDetection(data.Dataset):
    def __init__(self, tsv_file, labelmap, transform=None):
        from tsv_io import TSVFile
        from qd_common import load_list_file
        self._tsv = TSVFile(tsv_file)
        self._label_to_idx = {
            l: i
            for i, l in enumerate(load_list_file(labelmap))
        }
        self.transform = transform
        self.ids = None

    def __getitem__(self, index):
        key, im, gt, h, w = self.pull_item(index)

        return im, gt

    def get_ids(self):
        if self.ids is None:
            self.ids = [key for key, _, __ in self._tsv]
        return self.ids

    def __len__(self):
        return self._tsv.num_rows()

    def pull_item(self, index):
        from qd_common import img_from_base64
        key, label_str, img_str = self._tsv.seek(index)

        img = img_from_base64(img_str)
        height, width, channels = img.shape

        rects = json.loads(label_str)
        rects = [r for r in rects if 'diff' not in r or not r['diff']]
        for r_info in rects:
            r = r_info['rect']
            r[0], r[2] = r[0] / width, r[2] / width
            r[1], r[3] = r[1] / height, r[3] / height
            idx = self._label_to_idx[r_info['class']]
            r.append(idx)
        target = [r['rect'] for r in rects]

        if self.transform is not None:
            target = np.array(target)
            img, boxes, labels = self.transform(img, target[:, :4], target[:,
                                                                           4])
            # to rgb
            img = img[:, :, (2, 1, 0)]
            # img = img.transpose(2, 0, 1)
            target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
        return key, torch.from_numpy(img).permute(2, 0,
                                                  1), target, height, width
Exemplo n.º 7
0
class VolleyballDataset(Dataset):
    def __init__(self, phase):
        self.phase = phase
        self.image_path = "../dataset/Volleyball/videos/"
        if phase == "trainval":
            self.tsv_path = TRAINVAL_PATH
        else:
            self.tsv_path = TEST_PATH

        self.tsv = TSVFile(self.tsv_path)

    def __getitem__(self, idx):
        num_boxes = 12
        row = self.tsv.seek(idx)
        json_dict = json.loads(row[0])

        set_idx = json_dict['video']
        target_fidx = int(json_dict['target'])
        frame_idxes = int(json_dict['frame'])

        group_activities = np.array(json_dict['glabel'])
        group_info = np.array((set_idx, target_fidx, frame_idxes))

        person_actions = np.array(json_dict['plabel'])
        person_num = person_actions.shape[0]
        if person_num != num_boxes:
            person_actions = np.hstack(
                [person_actions, person_actions[:num_boxes - person_num]])

        person_actions = torch.tensor(person_actions)

        bboxes = np.array(json_dict['bboxes'])
        bboxes_total = np.concatenate(
            [bboxes, bboxes[:num_boxes - person_num]], axis=0)

        img_tensor = []
        img_path = self.image_path + '{}/{}/{}.jpg'.format(
            set_idx, target_fidx, frame_idxes)
        frame_img = Image.open(img_path)
        if set_idx in HIGH_RESOLUTION:
            img_tensor.append(resized_transform(frame_img))
        else:
            img_tensor.append(transform(frame_img))

        # (B, 3, 780, 1280)
        return torch.stack(
            img_tensor
        ), bboxes_total, person_actions, group_activities, group_info

    def __len__(self):
        return self.tsv.num_rows()
Exemplo n.º 8
0
    def __init__(self, phase, frame_mode):
        self.phase = phase
        if frame_mode == 'target-frame':
            TRAINVAL_PATH = './data/feature drop-0.2 trainval.tsv'
            TEST_PATH = './data/feature drop-0.2 test.tsv'
        elif frame_mode == 'frames':
            TRAINVAL_PATH = './data/feature frames drop-0.2 trainval.tsv'
            TEST_PATH = './data/feature frames drop-0.2 test.tsv'
        else:
            print('wrong frame mode')
            sys.exit(0)

        if phase == 'trainval':
            self.tsv_path = TRAINVAL_PATH
        elif phase == 'test':
            self.tsv_path = TEST_PATH
        else:
            print('wrong dataset phase')
            sys.exit(0)

        self.tsv = TSVFile(self.tsv_path)
class VolleyballDataset(Dataset):
    def __init__(self, phase):
        if phase == "train":
            self.tsv_path = TRAIN_PATH
        elif phase == 'val':
            self.tsv_path = VAL_PATH
        else:
            self.tsv_path = TEST_PATH

        self.tsv = TSVFile(self.tsv_path)

    def __getitem__(self, idx):
        row = self.tsv.seek(idx)
        set_id = row[0]
        tar_frame = row[1]
        gact = row[2]
        group_info = (set_id, tar_frame, gact)
        group_dict = json.loads(row[3])
        person_num = len(group_dict)

        person_actions = []
        person_pixels = []
        # person_pixels = {pid: [] for pid in range(person_num)}

        int_pid = 0
        for pid in group_dict:
            person_actions.append(group_dict[pid][0])
            for i in range(1, NUM_FRAMES + 1):
                img_np = np.array(group_dict[pid][i])

                image = Image.fromarray(img_np.astype('uint8'), 'RGB')
                img_tensor = trans(image)

                person_pixels.append(img_tensor)
                # person_pixels[int_pid].append(img_tensor)
            int_pid += 1
        return person_pixels, person_actions, group_info

    def __len__(self):
        return self.tsv.num_rows()
Exemplo n.º 10
0
class VolleyballDataset(Dataset):
    def __init__(self, phase, frame_mode):
        self.phase = phase
        if frame_mode == 'target-frame':
            TRAINVAL_PATH = './data/feature drop-0.2 trainval.tsv'
            TEST_PATH = './data/feature drop-0.2 test.tsv'
        elif frame_mode == 'frames':
            TRAINVAL_PATH = './data/feature frames drop-0.2 trainval.tsv'
            TEST_PATH = './data/feature frames drop-0.2 test.tsv'
        else:
            print('wrong frame mode')
            sys.exit(0)

        if phase == 'trainval':
            self.tsv_path = TRAINVAL_PATH
        elif phase == 'test':
            self.tsv_path = TEST_PATH
        else:
            print('wrong dataset phase')
            sys.exit(0)

        self.tsv = TSVFile(self.tsv_path)

    def __getitem__(self, idx):
        row = self.tsv.seek(idx)
        json_dict = json.loads(row[0])

        group_info = torch.tensor(json_dict['group_info'])
        actions = torch.tensor(
            json_dict['actions']).view(-1).repeat(NUM_FRAMES)
        # actions = torch.tensor(json_dict['actions']).repeat(NUM_FRAMES)
        activities = torch.tensor(json_dict['activities']).repeat(NUM_FRAMES)
        features = torch.tensor(json_dict['featuers'])

        return group_info, actions, activities, features

    def __len__(self):
        return self.tsv.num_rows()
class VolleyballDataset(Dataset):
    def __init__(self, phase):
        self.phase = phase
        if phase == "trainval":
            self.tsv_path = TRAINVAL_PATH
        else:
            self.tsv_path = TEST_PATH

        self.tsv = TSVFile(self.tsv_path)

    def __getitem__(self, idx):
        row = self.tsv.seek(idx)
        json_dict = json.loads(row[0])

        group_info = torch.tensor(json_dict['group_info'])
        actions = torch.tensor(json_dict['actions']).repeat(NUM_FRAMES)
        activities = np.array(json_dict['activities']).repeat(NUM_FRAMES)
        features = torch.tensor(json_dict['featuers'])

        return group_info, actions, activities, features

    def __len__(self):
        return self.tsv.num_rows()
Exemplo n.º 12
0
class VolleyballDataset(Dataset):
    def __init__(self, phase):
        self.phase = phase
        if phase == "trainval":
            self.tsv_path = TRAINVAL_PATH
        else:
            self.tsv_path = TEST_PATH

        self.tsv = TSVFile(self.tsv_path)

    def __getitem__(self, idx):
        num_boxes = 12
        row = self.tsv.seek(idx)
        json_dict = json.loads(row[0])

        set_id = json_dict['video']
        tar_frame = json_dict['tf']
        group_activities = json_dict['glabel']
        group_info = np.array((set_id, tar_frame, group_activities))
        person_actions = np.array(json_dict['plabel'])
        person_num = person_actions.shape[0]
        bboxes = np.array(json_dict['bboxes'])
        if person_num != num_boxes:
            bboxes = np.vstack([bboxes, bboxes[:num_boxes - len(bboxes[-1])]])
            person_actions = np.hstack(
                [person_actions, person_actions[:num_boxes - person_num]])
        img_np = np.array(json_dict['pixels'])

        image = Image.fromarray(img_np.astype('uint8'), 'RGB')
        img_tensor = test_transform(image)

        return img_tensor, bboxes, person_actions, np.array(
            group_activities), group_info

    def __len__(self):
        return self.tsv.num_rows()