Exemplo n.º 1
0
def cutflow(cuts, processes, relative=False, weighed=False, f=sys.stdout):
    expanded_proc = []
    procs = []
    for proc in processes:
        subs = [p for p in Process.expand(proc) if str(p) in cuts[0].processes()]
        if len(subs) > 0:
            expanded_proc.append(subs)
            procs.append(proc)

    cutdata = [[sum(float(cut[p]) for p in ps) for ps in expanded_proc] for cut in cuts]

    if weighed:
        for n, c in enumerate(reversed(cuts)):
            if not isinstance(c, StaticCut):
                break

        ratios = [a / (b if b != 0 else 1) for a, b in zip(cutdata[-1], cutdata[-(n + 1)])]
        cutdata = cutdata[:-n]
        for i in xrange(3, len(cutdata)):
            cutdata[i] = [a * b for a, b in zip(cutdata[i], ratios)]

    if relative:
        for i in xrange(1, len(cutdata)):
            cutdata[-i] = [(float(b) / a if a != 0 else 0)
                           for a, b in zip(cutdata[-(i + 1)], cutdata[-i])]

    print_cuts(cuts, procs, cutdata, expanded_proc, "Cut", f, 5 if relative else 2)
Exemplo n.º 2
0
 def get_event_count(cls, f, proc, category, fmt, unweighed):
     p = cls.__plots['Events']
     p.clear()
     p.read(f, category, Process.expand(proc), fmt=fmt)
     if unweighed:
         return p._get_histogram(proc).GetEntries()
     return p._get_histogram(proc).GetBinContent(1)
Exemplo n.º 3
0
def cutflow(cuts, procs, relative=False, f=sys.stdout):
    expanded_proc = [Process.expand(proc) for proc in procs]

    cutdata = [[sum(float(cut[p]) for p in ps) for ps in expanded_proc] for cut in cuts]

    if relative:
        for i in xrange(1, len(cutdata)):
            cutdata[-i] = [float(b) / a for a, b in zip(cutdata[-(i + 1)], cutdata[-i])]

    namelength = max(len(unicode(cut)) for cut in cuts)
    fieldlengths = []
    for proc, subprocs in zip(procs, expanded_proc):
        val = sum(cuts[0][p] for p in subprocs)
        length = max(len(proc), len("{:.2f}".format(float(val))))
        fieldlengths.append(length)

    header = u"{{:{0}}}".format(namelength) \
            + u"".join(u"   {{:{0}}}".format(fl) for fl in fieldlengths) \
            + u"\n"
    format = u"{{:{0}}}".format(namelength) \
            + "".join("   {{:{0}.2f}}".format(fl) for fl in fieldlengths) \
            + "\n"

    f.write(header.format("Cut", *procs))
    f.write("-" * namelength + "".join("   " + "-" * fl for fl in fieldlengths) + "\n")
    for cut, data in zip(cuts, cutdata):
        f.write(format.format(cut, *data))
Exemplo n.º 4
0
def cutflow(cuts, procs, relative=False, f=sys.stdout):
    expanded_proc = [Process.expand(proc) for proc in procs]

    cutdata = [[sum(float(cut[p]) for p in ps) for ps in expanded_proc]
               for cut in cuts]

    if relative:
        for i in xrange(1, len(cutdata)):
            cutdata[-i] = [
                float(b) / a for a, b in zip(cutdata[-(i + 1)], cutdata[-i])
            ]

    namelength = max(len(unicode(cut)) for cut in cuts)
    fieldlengths = []
    for proc, subprocs in zip(procs, expanded_proc):
        val = sum(cuts[0][p] for p in subprocs)
        length = max(len(proc), len("{:.2f}".format(float(val))))
        fieldlengths.append(length)

    header = u"{{:{0}}}".format(namelength) \
            + u"".join(u"   {{:{0}}}".format(fl) for fl in fieldlengths) \
            + u"\n"
    format = u"{{:{0}}}".format(namelength) \
            + "".join("   {{:{0}.2f}}".format(fl) for fl in fieldlengths) \
            + "\n"

    f.write(header.format("Cut", *procs))
    f.write("-" * namelength + "".join("   " + "-" * fl
                                       for fl in fieldlengths) + "\n")
    for cut, data in zip(cuts, cutdata):
        f.write(format.format(cut, *data))
Exemplo n.º 5
0
def read_inputs(config, setup):
    from ttH.TauRoast.processing import Process

    fn = os.path.join(config.get("indir", config["outdir"]), "ntuple.root")

    signal = None
    signal_weights = None
    for proc, weight in sum([cfg.items() for cfg in setup['signals']], []):
        for p in sum([Process.expand(proc)], []):
            logging.debug('reading {}'.format(p))
            d = rec2array(root2array(fn, str(p), setup['variables']))
            if isinstance(weight, float) or isinstance(weight, int):
                w = np.array([weight] * len(d))
            else:
                w = rec2array(root2array(fn, str(p), [weight])).ravel()
            w *= p.cross_section / p.events
            if signal is not None:
                signal = np.concatenate((signal, d))
                signal_weights = np.concatenate((signal_weights, w))
            else:
                signal = d
                signal_weights = w

    background = None
    background_weights = None
    for proc, weight in sum([cfg.items() for cfg in setup['backgrounds']], []):
        for p in sum([Process.expand(proc)], []):
            logging.debug('reading {}'.format(p))
            d = rec2array(root2array(fn, str(p), setup['variables']))
            if isinstance(weight, float) or isinstance(weight, int):
                w = np.array([weight] * len(d))
            else:
                w = rec2array(root2array(fn, str(p), [weight])).ravel()
            w *= p.cross_section / p.events
            if background is not None:
                background = np.concatenate((background, d))
                background_weights = np.concatenate((background_weights, w))
            else:
                background = d
                background_weights = w

    factor = np.sum(signal_weights) / np.sum(background_weights)
    logging.info("renormalizing background events by factor {}".format(factor))
    background_weights *= factor

    return signal, signal_weights, background, background_weights
Exemplo n.º 6
0
def add_mva(args, config):
    fn = os.path.join(config["outdir"], "ntuple.root")
    for proc in set(sum((Process.expand(p) for p in config['plot'] + config['limits']), [])):
        systematics = ['NA']
        if args.systematics:
            weights = config.get(proc.cutflow + ' weights')
            systematics = config.get(proc.cutflow + ' systematics', [])
            systematics = set([s for s, w in expand_systematics(systematics, weights)])
        for unc in systematics:
            logging.info("using systematics: " + unc)
            proc.add_mva(config, fn, unc)
Exemplo n.º 7
0
def analyze(args, config):
    fn = os.path.join(config["outdir"], "ntuple.root")

    if args.reuse:
        cutflows = split_cuts(load_cutflows(config))
    else:
        if os.path.exists(fn):
            os.unlink(fn)
        cutflows = setup_cuts(config)

    for proc in set(sum((Process.expand(p) for p in config['plot'] + config['limits']), [])):
        uncertainties = ['NA']
        if args.systematics:
            weights = config.get(proc.cutflow + ' weights')
            systematics = config.get(proc.cutflow + ' systematics', [])
            uncertainties = [s for s, w in expand_systematics(systematics, weights)]
        for unc in uncertainties:
            suffix = '' if unc == 'NA' else '_' + unc
            counts, cuts, weights = cutflows[proc.cutflow + suffix]

            if len(counts) > 0 and str(proc) in counts[0].processes():
                continue

            logging.info("using systematics: " + unc)

            local_cuts = list(cuts)
            for cfg in proc.additional_cuts:
                local_cuts.insert(0, Cut(*cfg))

            proc.analyze(config, fn, counts, local_cuts, weights, unc, args.debug_cuts)

    concatenated_cutflows = Cutflows()
    for name, (counts, cuts, weights) in cutflows.items():
        cuts = counts + cuts + weights
        normalize(cuts, config["lumi"], config.get("event limit"))
        concatenated_cutflows[name] = cuts

    concatenated_cutflows.save(config)
Exemplo n.º 8
0
 def _get_histogram(self, process):
     procs = Process.expand(process)
     h = self.__hists[procs[0]].Clone()
     for proc in procs[1:]:
         h.Add(self.__hists[proc])
     return h
Exemplo n.º 9
0
 def _get_histogram(self, process):
     procs = Process.expand(process)
     h = self.__hists[procs[0]].Clone()
     for proc in procs[1:]:
         h.Add(self.__hists[proc])
     return h