Exemplo n.º 1
0
    def test_attributes_unchanged_from_transform(self):
        """Test that attributes are unchanged after transform is run."""

        df = d.create_df_9()

        x = CappingTransformer(quantiles={"a": [0.2, 1], "b": [0, 1]})

        x.fit(df)

        x2 = CappingTransformer(quantiles={"a": [0.2, 1], "b": [0, 1]})

        x2.fit(df)

        x2.transform(df)

        assert (
            x.capping_values == x2.capping_values
        ), "capping_values attribute modified in transform"
        assert (
            x._replacement_values == x2._replacement_values
        ), "_replacement_values attribute modified in transform"
        assert (
            x.weights_column == x2.weights_column
        ), "weights_column attribute modified in transform"
        assert x.quantiles == x2.quantiles, "quantiles attribute modified in transform"
Exemplo n.º 2
0
    def test_check_is_fitted_call_count(self, mocker):
        """Test there are 2 calls to BaseTransformer check_is_fitted in transform."""

        df = d.create_df_3()

        x = CappingTransformer(capping_values={"a": [2, 5], "b": [-1, 8]})

        with h.assert_function_call_count(
            mocker, tubular.base.BaseTransformer, "check_is_fitted", 2
        ):

            x.transform(df)
Exemplo n.º 3
0
    def test_non_numeric_column_error(self):
        """Test that transform will raise an error if a column to transform is not numeric."""

        df = d.create_df_5()

        x = CappingTransformer(capping_values={"a": [2, 5], "b": [-1, 8], "c": [-1, 8]})

        with pytest.raises(
            TypeError, match=r"The following columns are not numeric in X; \['b', 'c'\]"
        ):

            x.transform(df)
Exemplo n.º 4
0
    def test_quantile_not_fit_error(self):
        """Test that transform will raise an error if quantiles are specified in init but fit is not run before calling transform."""

        df = d.create_df_9()

        x = CappingTransformer(quantiles={"a": [0.2, 1], "b": [0, 1]})

        with pytest.raises(
            ValueError,
            match="capping_values attribute is an empty dict - perhaps the fit method has not been run yet",
        ):

            x.transform(df)
Exemplo n.º 5
0
    def test_replacement_values_dict_not_set_error(self):
        """Test that transform will raise an error if _replacement_values is an empty dict."""

        df = d.create_df_9()

        x = CappingTransformer(quantiles={"a": [0.2, 1], "b": [0, 1]})

        # manually set attribute to get past the capping_values attribute is an empty dict exception
        x.capping_values = {"a": [1, 4]}

        with pytest.raises(
            ValueError,
            match="_replacement_values attribute is an empty dict - perhaps the fit method has not been run yet",
        ):

            x.transform(df)
Exemplo n.º 6
0
    def test_learnt_values_not_modified(self):
        """Test that the replacements from fit are not changed in transform."""

        capping_values_dict = {"a": [2, 5], "b": [-1, 8]}

        df = d.create_df_3()

        x = CappingTransformer(capping_values_dict)

        x.transform(df)

        h.test_object_attributes(
            obj=x,
            expected_attributes={"capping_values": capping_values_dict},
            msg="Attributes for CappingTransformer set in init",
        )
Exemplo n.º 7
0
    def test_check_is_fitted_call_1(self, mocker):
        """Test the first call to BaseTransformer check_is_fitted in transform."""

        df = d.create_df_3()

        x = CappingTransformer(capping_values={"a": [2, 5], "b": [-1, 8]})

        expected_call_args = {
            0: {"args": (["capping_values"],), "kwargs": {}},
            1: {"args": (["_replacement_values"],), "kwargs": {}},
        }

        with h.assert_function_call(
            mocker, tubular.base.BaseTransformer, "check_is_fitted", expected_call_args
        ):

            x.transform(df)
Exemplo n.º 8
0
    def test_super_transform_called(self, mocker):
        """Test that BaseTransformer.transform called."""

        df = d.create_df_3()

        x = CappingTransformer(capping_values={"a": [2, 5], "b": [-1, 8]})

        expected_call_args = {0: {"args": (d.create_df_3(),), "kwargs": {}}}

        with h.assert_function_call(
            mocker,
            tubular.base.BaseTransformer,
            "transform",
            expected_call_args,
            return_value=d.create_df_3(),
        ):

            x.transform(df)
Exemplo n.º 9
0
    def test_non_cap_column_left_untouched(self, df, expected):
        """Test that capping is applied only to specific columns, others remain the same."""

        x = CappingTransformer(capping_values={"a": [2, 10]})

        df_transformed = x.transform(df)

        h.assert_frame_equal_msg(
            actual=df_transformed,
            expected=expected,
            msg_tag="Unexpected values in CappingTransformer.transform, with columns meant to not be transformed",
        )
Exemplo n.º 10
0
    def test_expected_output_min_and_max_combinations(self, df, expected):
        """Test that capping is applied correctly in transform."""

        x = CappingTransformer(
            capping_values={"a": [2, 5], "b": [None, 7], "c": [0, None]}
        )

        df_transformed = x.transform(df)

        h.assert_frame_equal_msg(
            actual=df_transformed,
            expected=expected,
            msg_tag="Unexpected values in CappingTransformer.transform",
        )