Exemplo n.º 1
0
def simulate(randParkSignal, sys_dyn, ctrl, disc_dynamics, T):
    # initialization:
    #     pick initial continuous state consistent with
    #     initial controller state (discrete)
    u, v, edge_data = list(ctrl.edges('Sinit', data=True))[1]
    s0_part = edge_data['loc']
    init_poly_v = pc.extreme(disc_dynamics.ppp[s0_part][0])
    x_init = sum(init_poly_v) / init_poly_v.shape[0]
    x = [x_init[0]]
    y = [x_init[1]]
    N = disc_dynamics.disc_params['N']
    s0_part = find_controller.find_discrete_state([x[0], y[0]],
                                                  disc_dynamics.ppp)
    ctrl = synth.determinize_machine_init(ctrl, {'loc': s0_part})
    (s, dum) = ctrl.reaction('Sinit', {'park': randParkSignal[0]})
    print(dum)
    for i in range(0, T):
        (s, dum) = ctrl.reaction(s, {'park': randParkSignal[i]})
        u = find_controller.get_input(x0=np.array([x[i * N], y[i * N]]),
                                      ssys=sys_dyn,
                                      abstraction=disc_dynamics,
                                      start=s0_part,
                                      end=disc_dynamics.ppp2ts.index(
                                          dum['loc']),
                                      ord=1,
                                      mid_weight=5)
        for ind in range(N):
            s_now = np.dot(sys_dyn.A, [x[-1], y[-1]]) + np.dot(
                sys_dyn.B, u[ind])
            x.append(s_now[0])
            y.append(s_now[1])
        s0_part = find_controller.find_discrete_state([x[-1], y[-1]],
                                                      disc_dynamics.ppp)
        s0_loc = disc_dynamics.ppp2ts[s0_part]
        print(s0_loc)
        print(dum['loc'])
        print(dum)
    show_traj = True
    if show_traj:
        assert plt, 'failed to import matplotlib'
        plt.plot(x)
        plt.plot(y)
        plt.show()
def pick_initial_state(ctrl, disc_dynamics):
    """Construct initial discrete and continuous state

    for `qinit == '\A \A'`.
    """
    # pick initial discrete state
    init_edges = ctrl.edges('Sinit', data=True)
    u, v, edge_data = next(iter(init_edges))
    assert u == 'Sinit', u
    d_init = edge_data
    # pick initial continuous state
    s0_part = edge_data['loc']
    init_poly = disc_dynamics.ppp.regions[s0_part].list_poly[0]
    x_init = pick_point_in_polytope(init_poly)
    s0_part_ = find_controller.find_discrete_state(x_init, disc_dynamics.ppp)
    assert s0_part == s0_part_, (s0_part, s0_part_)
    return d_init, x_init
Exemplo n.º 3
0
# Set up parameters for get_input()
disc_dynamics.disc_params['conservative'] = True
disc_dynamics.disc_params['closed_loop'] = False

# initialization:
#     pick initial continuous state consistent with
#     initial controller state (discrete)
u, v, edge_data = list(ctrl.edges('Sinit', data=True))[1]
s0_part = edge_data['loc']
init_poly_v = pc.extreme(disc_dynamics.ppp[s0_part][0])
x_init = sum(init_poly_v) / init_poly_v.shape[0]
x = [x_init[0]]
y = [x_init[1]]
N = disc_dynamics.disc_params['N']
s0_part = find_controller.find_discrete_state(
    [x[0], y[0]], disc_dynamics.ppp)
ctrl = synth.determinize_machine_init(ctrl, {'loc': s0_part})
(s, dum) = ctrl.reaction('Sinit', {'park': randParkSignal[0]})
print(dum)
for i in range(0, T):
    (s, dum) = ctrl.reaction(s, {'park': randParkSignal[i]})
    u = find_controller.get_input(
        x0=np.array([x[i * N], y[i * N]]),
        ssys=sys_dyn,
        abstraction=disc_dynamics,
        start=s0_part,
        end=disc_dynamics.ppp2ts.index(dum['loc']),
        ord=1,
        mid_weight=5)
    for ind in range(N):
        s_now = np.dot(
Exemplo n.º 4
0
# initialization:
#     pick initial continuous state consistent with
#     initial controller state (discrete)
u, v, edge_data = ctrl.edges('Sinit', data=True)[1]
s0_part = edge_data['loc']
print('s0_part: ', s0_part)
init_poly_v = pc.extreme(disc_dynamics.ppp[s0_part][0])
x_init = sum(init_poly_v) / init_poly_v.shape[0]
x = [x_init[0]]
y = [x_init[1]]

x_init = 1.5
y_init = 1
print("x: ", x_init)
N = disc_dynamics.disc_params['N']
s0_part = find_controller.find_discrete_state([x_init, y_init],
                                              disc_dynamics.ppp)
ctrl = synth.determinize_machine_init(ctrl, {'loc': s0_part})
(s, dum) = ctrl.reaction(1, {'park': randParkSignal[0]})

start = s0_part
end = disc_dynamics.ppp2ts.index(dum['loc'])
print("start: ", start)
print("end: ", end)

u = find_controller.get_input(x0=np.array([x_init, y_init]),
                              ssys=sys_dyn,
                              abstraction=disc_dynamics,
                              start=start,
                              end=end,
                              ord=1,
                              mid_weight=5)
# Simulation
print('\n Simulation starts \n')
T = 100
# let us pick an environment signal
randParkSignal = [random.randint(0, 1) for b in range(1, T + 1)]
# initialization:
#     pick initial continuous state consistent with
#     initial controller state (discrete)
u, v, edge_data = ctrl.edges('Sinit', data=True)[1]
s0_part = edge_data['loc']
init_poly_v = pc.extreme(disc_dynamics.ppp[s0_part][0])
x_init = sum(init_poly_v) / init_poly_v.shape[0]
x = [x_init[0]]
y = [x_init[1]]
N = disc_dynamics.disc_params['N']
s0_part = find_controller.find_discrete_state(
    [x[0], y[0]], disc_dynamics.ppp)
ctrl = synth.determinize_machine_init(ctrl, {'loc': s0_part})
(s, dum) = ctrl.reaction('Sinit', {'park': randParkSignal[0]})
print(dum)
for i in range(0, T):
    (s, dum) = ctrl.reaction(s, {'park': randParkSignal[i]})
    u = find_controller.get_input(
        x0=np.array([x[i * N], y[i * N]]),
        ssys=sys_dyn,
        abstraction=disc_dynamics,
        start=s0_part,
        end=disc_dynamics.ppp2ts.index(dum['loc']),
        ord=1,
        mid_weight=5)
    for ind in range(N):
        s_now = np.dot(
Exemplo n.º 6
0
def simulate2d(
        env_inputs, sys_dyn, ctrl, disc_dynamics, T,
        qinit='\E \A',
        d_init=None,
        x_init=None,
        show_traj=True):
    r"""Simulation for systems with two-dimensional continuous dynamics.

    The first item in `env_inputs` is used as the initial environment
    discrete state, if `qinit == '\E \A' or qinit == \A \E'`.
    This item is used to find the initial transition in `ctrl`.

    The initial continuous state is selected within the initial polytope
    of the partition, if `qinit \in ('\E \E', '\E \A', '\A \E')`.

    The initial continuous state is `x_init` if `qinit == '\A \A'`,
    and is asserted to correspond to `d_init['loc']`.
    The initial discrete state is `d_init` if `qinit == '\A \A'`,
    and is used to find the initial transition in `ctrl`.

    @param env_inputs: `list` of `dict`, with length `T + 1`
    @param sys_dyn: system dynamics
    @type sys_dyn: `tulip.hybrid.LtiSysDyn`
    @type ctrl: `tulip.transys.machines.MealyMachine`
    @type disc_dynamics: `tulip.abstract.discretization.AbstractPwa`
    @param T: number of simulation steps
    @param qinit: quantification of initial conditions
    @param d_init: initial discrete state,
        given when `qinit == '\A \A'`
    @param x_init: initial continuous state,
        given when `qinit == '\A \A'`

    @param show_traj: plot trajectory
    """
    N = disc_dynamics.disc_params['N']
    # initialization:
    #     pick initial continuous state consistent with
    #     initial controller state (discrete)
    if qinit == '\E \A' or qinit == '\A \E':
        # pick an initial discrete system state given the#
        # initial discrete environment state
        (nd, out) = ctrl.reaction('Sinit', env_inputs[0])
        init_edges = ctrl.edges('Sinit', data=True)
        for u, v, edge_data in init_edges:
            assert u == 'Sinit', u
            if v == nd:
                break
        assert v == nd, (v, nd)
        s0_part = edge_data['loc']
        assert s0_part == out['loc'], (s0_part, out)
    elif qinit == '\E \E':
        # pick an initial discrete state
        init_edges = ctrl.edges('Sinit', data=True)
        u, v, edge_data = next(iter(init_edges))
        assert u == 'Sinit', u
        s0_part = edge_data['loc']
        nd = v
    elif qinit == '\A \A':
        assert d_init is not None
        assert x_init is not None
        s0_part = find_controller.find_discrete_state(
            x_init, disc_dynamics.ppp)
        assert s0_part == d_init['loc'], (s0_part, d_init)
        # find the machine node with `d_init` as discrete state
        init_edges = ctrl.edges('Sinit', data=True)
        for u, v, edge_data in init_edges:
            assert u == 'Sinit', u
            if edge_data == d_init:
                break
        assert edge_data == d_init, (edge_data, d_init)
        nd = v
    # initialize continuous state for the cases that the initial
    # continuous state is not given
    if qinit in ('\E \E', '\E \A', '\A \E'):
        # find initial polytope
        init_poly = disc_dynamics.ppp.regions[s0_part].list_poly[0]
        # disc_dynamics.ppp[s0_part][0]
        #
        # pick an initial continuous state
        x_init = pick_point_in_polytope(init_poly)
        # assert equal
        s0_part_ = find_controller.find_discrete_state(
            x_init, disc_dynamics.ppp)
        assert s0_part == s0_part_, (s0_part, s0_part_)
    x = [x_init[0]]
    y = [x_init[1]]
    for i in range(T):
        (nd, out) = ctrl.reaction(nd, env_inputs[i + 1])
        x0 = np.array([x[i * N], y[i * N]])
        start = s0_part
        end = disc_dynamics.ppp2ts.index(out['loc'])
        u = find_controller.get_input(
            x0=x0,
            ssys=sys_dyn,
            abstraction=disc_dynamics,
            start=start,
            end=end,
            ord=1,
            mid_weight=5)
        # continuous trajectory for interval `i`
        for ind in range(N):
            s_now = np.dot(
                sys_dyn.A, [x[-1], y[-1]]
            ) + np.dot(sys_dyn.B, u[ind])
            x.append(s_now[0])
            y.append(s_now[1])
        point = [x[-1], y[-1]]
        s0_part = find_controller.find_discrete_state(
            point, disc_dynamics.ppp)
        s0_loc = disc_dynamics.ppp2ts[s0_part]
        assert s0_loc == out['loc'], (s0_loc, out['loc'])
        print('outputs:\n    {out}\n'.format(out=out))
    if show_traj:
        from matplotlib import pyplot as plt
        plt.plot(x, label='x')
        plt.plot(y, '--', label='y')
        plt.xlabel('time')
        plt.legend()
        plt.grid()
        plt.show()