Exemplo n.º 1
0
def job_8():
    try:
        print("I'm working......银行间同业拆放利率")
        # Shibor拆放利率
        shibor_data = ts.shibor_data()
        data = pd.DataFrame(shibor_data)
        data.to_sql('shibor_data',engine,index=True,if_exists='replace')
        print("银行间同业拆放利率......done")

        # 银行报价数据
        shibor_quote_data = ts.shibor_quote_data()
        data = pd.DataFrame(shibor_quote_data)
        data.to_sql('shibor_quote_data',engine,index=True,if_exists='replace')
        print("银行报价数据......done")

        # Shibor均值数据
        shibor_ma_data = ts.shibor_ma_data()
        data = pd.DataFrame(shibor_ma_data)
        data.to_sql('shibor_ma_data',engine,index=True,if_exists='replace')
        print("Shibor均值数据......done")

        # 贷款基础利率(LPR)
        lpr_data = ts.lpr_data()
        data = pd.DataFrame(lpr_data)
        data.to_sql('lpr_data',engine,index=True,if_exists='replace')
        print("贷款基础利率......done")

        # LPR均值数据
        lpr_ma_data = ts.lpr_ma_data()
        data = pd.DataFrame(lpr_ma_data)
        data.to_sql('lpr_ma_data',engine,index=True,if_exists='replace')
        print("LPR均值数据......done")
    except Exception as e:
        print(e)
Exemplo n.º 2
0
	def getShiborQuoteDate(self):
		file_name = str(self.date)+'_shibor_quote'+'.csv'
		path = self.index + self.index_shibor_quote_data + file_name
		data = ts.shibor_quote_data(year = self.date)
		data.sort('date', ascending=False).head(10)
		data.to_csv(path, encoding='utf-8')
		print(file_name)
Exemplo n.º 3
0
    def __call__(self, conns):
        self.base = Base()
        self.financial_data = conns['financial_data']
        year = self.base.gettoday()[:4]

        #Shibor拆放利率
        shibor_data = ts.shibor_data(year)
        print(shibor_data)
        self.base.batchwri(shibor_data, 'shibor_data', self.financial_data)

        #银行报价数据
        shibor_quote_date = ts.shibor_quote_data(year)
        self.base.batchwri(shibor_quote_date, 'shibor_quote_data',
                           self.financial_data)

        #Shibor均值数据
        shibor_ma_data = ts.shibor_ma_data(year)
        self.base.batchwri(shibor_ma_data, 'shibor_ma_data',
                           self.financial_data)

        #贷款基础利率(LPR)
        lpr_data = ts.lpr_data(year)
        self.base.batchwri(lpr_data, 'lpr_data', self.financial_data)

        #LPR均值数据
        lpr_ma_data = ts.lpr_ma_data(year)
        self.base.batchwri(lpr_ma_data, 'lpr_ma_data', self.financial_data)
Exemplo n.º 4
0
 def setShiborQuoteData(self,
                        year=None,
                        number=1,
                        isSave=False,
                        tableName=CALLLOANS_SHIBOR_QUOTE_DATA):
     yearList = getYearList(year, number)
     for yearItem in yearList:
         df = ts.shibor_quote_data(yearItem)
         if isSave is True:
             df.to_sql(tableName, self.engine_sql, if_exists='append')
     return df
Exemplo n.º 5
0
def shibor_quote(engine, year, sdate=None):
    tbl = "shibor_quote"
    tsl.log(tbl + " start...")
    try:
        df = ts.shibor_quote_data(year)
        if sdate is not None:
            df = df[df.date >= sdate]
        df.to_sql(tbl, engine, if_exists='append')
        tsl.log(tbl + " done")
    except BaseException, e:
        print e
        tsl.log(tbl + " error")
Exemplo n.º 6
0
def get_shibor_quote_data(year=None):
    """
    银行报价数据
    获取银行间报价数据,目前只提供2006年以来的数据。
    """
    df = ts.shibor_quote_data(year)
    # print(df)
    if df is not None:
        res = df.to_sql(shibor_quote_data, engine, if_exists='replace')
        msg = 'ok' if res is None else res
        print('获取银行间报价数据: 年份 {0}  {1}'.format(year, msg) + '\n')
    else:
        print('获取银行间报价数据: 年份 {0}  {1}'.format(year, 'None') + '\n')
Exemplo n.º 7
0
def get_shibor_data((shibor_type,yearlist)):
    if shibor_type == 'data':
        DTS=[]
        for year in yearlist:
            preDTS = ts.shibor_data(year)
            DTS.append(preDTS)

        DTS=pd.concat(DTS)
        DTS.to_csv('D:\\ts\\shibor\\shibor_%s.csv'%shibor_type,encoding='gbk')

    elif shibor_type == 'quote_data':
        DTS = []
        for year in yearlist:
            preDTS = ts.shibor_quote_data(year)
            DTS.append(preDTS)

        DTS = pd.concat(DTS)
        DTS.to_csv('D:\\ts\\shibor\\shibor_%s.csv' % shibor_type, encoding='gbk')

    elif shibor_type == 'ma_data':
        DTS = []
        for year in yearlist:
            preDTS = ts.shibor_ma_data(year)
            DTS.append(preDTS)

        DTS = pd.concat(DTS)
        DTS.to_csv('D:\\ts\\shibor\\shibor_%s.csv' % shibor_type, encoding='gbk')

    elif shibor_type == 'lpr_data':
        DTS = []
        for year in yearlist:
            preDTS = ts.lpr_data(year)
            DTS.append(preDTS)

        DTS = pd.concat(DTS)
        DTS.to_csv('D:\\ts\\shibor\\shibor_%s.csv' % shibor_type, encoding='gbk')

    elif shibor_type == 'lpr_ma_data':
        DTS = []
        for year in yearlist:
            preDTS = ts.lpr_ma_data(year)
            DTS.append(preDTS)

        DTS = pd.concat(DTS)
        DTS.to_csv('D:\\ts\\shibor\\shibor_%s.csv' % shibor_type, encoding='gbk')
Exemplo n.º 8
0
def get_shibor_quote(year=None):
    """银行报价数据

    Args:
        year: 年份(YYYY),默认为当前年份
    """
    if not year:
        year = util.get_year()
    logger.info('Begin get ShiborQuote, year is: %s.' % year)
    try:
        data_df = ts.shibor_quote_data(year)
    except Exception as e:
        logger.exception('Error get ShiborQuote. year is: %s.' % year)
        return None
    else:
        data_dicts = []
        if data_df is None or data_df.empty:
            logger.warn('Empty get ShiborQuote. year is: %s.' % year)
        else:
            data_df['date'] = data_df['date'].astype(str)
            data_dicts = [{
                'date': row[0],
                'bank': row[1],
                'ON': row[2],
                'ON_B': row[3],
                'ON_A': row[4],
                'W1_B': row[5],
                'W1_A': row[6],
                'W2_B': row[7],
                'W2_A': row[8],
                'M1_B': row[9],
                'M1_A': row[10],
                'M3_B': row[11],
                'M3_A': row[12],
                'M6_B': row[13],
                'M6_A': row[14],
                'M9_B': row[15],
                'M9_A': row[16],
                'Y1_B': row[17],
                'Y1_A': row[18],
                'year': year
            } for row in data_df.values]
            logger.info('Success get ShiborQuote. year is: %s.' % year)
        return data_dicts
Exemplo n.º 9
0
#三大需求对GDP贡献
gdp_for = ts.get_gdp_for()

#三大产业对GDP拉动
gdp_pull = ts.get_gdp_pull()

#三大产业贡献率
gdp_contrib = ts.get_gdp_contrib()


cpi = ts.get_cpi()

ppi = ts.get_ppi()

df = ts.shibor_data() #取当前年份的数据
#df = ts.shibor_data(2014) #取2014年的数据
df.sort('date', ascending=False).head(10)

df = ts.shibor_quote_data() #取当前年份的数据
#df = ts.shibor_quote_data(2014) #取2014年的数据
df.sort('date', ascending=False).head(10)

#shibo均值
df = ts.shibor_ma_data() #取当前年份的数据
#df = ts.shibor_ma_data(2014) #取2014年的数据
df.sort('date', ascending=False).head(10)

#贷款基础利率
lpr = ts.lpr_data() #取当前年份的数据
#df = ts.lpr_data(2014) #取2014年的数据
Exemplo n.º 10
0
year:年份(YYYY),默认为当前年份
返回值说明:

date:日期
bank:报价银行名称
ON:隔夜拆放利率
ON_B:隔夜拆放买入价
ON_A:隔夜拆放卖出价
1W_B:1周买入
1W_A:1周卖出
2W_B:买入
2W_A:卖出
1M_B:买入
1M_A:卖出
3M_B:买入
3M_A:卖出
6M_B:买入
6M_A:卖出
9M_B:买入
9M_A:卖出
1Y_B:买入
1Y_A:卖出
'''

df = ts.shibor_quote_data(2017)
#直接保存
#df = ts.shibor_data(2014) #取2014年的数据
#df.sort('date', ascending=False).head(10)

print(df)
Exemplo n.º 11
0
    def fetchByYear(self, mongo, func):
        years = range(self.begin_year, self.end_year_notinclude)
        for year in years:
            print(year)
            print(type(year))
            # year = int(year)
            #print (type(year))
            if (func == 'shibor_data'):
                if (year < 2006):
                    print("[Wrong]没有" + str(year) + "年数据")
                    continue
                else:
                    print("有" + str(year) + "年数据")
                    #df = ts.shibor_data()  # 取当前年份的数据
                    print("shibor")
                    print(type(ts.shibor_data(year)))
                    df = ts.shibor_data(year)  #取2014年的数据

                    #df.sort('date', ascending=False)
            elif (func == 'shibor_quote_data'):
                if (year < 2006):
                    print("[Wrong]没有" + str(year) + "年数据")
                    continue
                else:
                    print("有" + str(year) + "年数据")
                    #df = ts.shibor_quote_data()  # 取当前年份的数据
                    df = ts.shibor_quote_data(year)  #取2014年的数据
                    #df.sort('date', ascending=False)
            elif (func == 'shibor_ma_data'):
                if (year < 2006):
                    print("[Wrong]没有" + str(year) + "年数据")
                    continue
                else:
                    print("有" + str(year) + "年数据")
                    #df = ts.shibor_ma_data()  # 取当前年份的数据

                    df = ts.shibor_ma_data(year)  #取2014年的数据
                    print("4444444444444")
                    print(df)
                    #df.sort('date', ascending=False)
            elif (func == 'lpr_data'):
                if (year < 2013):
                    print("[Wrong]没有" + str(year) + "年数据")
                    continue
                else:
                    print("有" + str(year) + "年数据")
                    #df = ts.lpr_data()  # 取当前年份的数据
                    df = ts.lpr_data(year)  #取2014年的数据
                    #df.sort('date', ascending=False)
                    # df =  fd.lpr_data(self.year)
            elif (func == 'lpr_ma_data'):
                if (year < 2013):
                    print("[Wrong]没有" + str(year) + "年数据")
                    continue
                else:
                    print("有" + str(year) + "年数据")
                    # df = ts.lpr_ma_data()  # 取当前年份的数据
                    df = ts.lpr_ma_data(year)  #取2014年的数据
                    #df.sort('date', ascending=False)
            else:
                print("error" + func)
                df = {"err": True}
            year = str(year)
            print("###################")
            print(df)
            print(func)
            tmpJson = json.loads(df.to_json(orient='records'))
            # tmpJson = json.dumps(df)
            print("_________")
            print(tmpJson)
            print(type(tmpJson))
            import time
            for i in range(len(tmpJson)):
                tmpJson[i][u'year'] = int(year)
                d = time.localtime(tmpJson[i][u'date'] / 1000)
                tmpJson[i][u'date'] = time.strftime('%Y-%m-%d', d)
            coll = mongo.shibor[func]
            coll2 = mongo.shibor[func + '_' + str(year)]
            coll2.insert(tmpJson)
            coll.insert(tmpJson)
Exemplo n.º 12
0
import pymongo
import json
import pandas as pd

#    ts.get_cash_flow : get specialed Code Cash_flow in the History .
# 600547:山东黄金
# 600362:江西铜业
# 600312:平高电气
# 600499:科达洁能
# 603993:洛阳钼业
db = "Shibor"
coll = "ShiborQuoteData"
year = 2017

conn = pymongo.MongoClient('127.0.0.1', port=27017)
df = ts.shibor_quote_data(year)
# index data columns(X columns)
dicIndex = json.loads(df.to_json(orient='split'))
for i, ind in enumerate(dicIndex['index']):
    # Note: pandas has some transformation between date,timestampe and string.
    d = pd.to_datetime(dicIndex['data'][i][0], unit='ms').strftime('%Y-%m-%d')
    jsonstr = {
        '_id': d,
        'year': year,
        dicIndex['columns'][0]: d,
        dicIndex['columns'][1]: dicIndex['data'][i][1],
        dicIndex['columns'][2]: dicIndex['data'][i][2],
        dicIndex['columns'][3]: dicIndex['data'][i][3],
        dicIndex['columns'][4]: dicIndex['data'][i][4],
        dicIndex['columns'][5]: dicIndex['data'][i][5],
        dicIndex['columns'][6]: dicIndex['data'][i][6],