Exemplo n.º 1
0
    def test_server_launch_operation(self, mocker, time_series_index_factory):
        self._mock_user(mocker)
        algorithm_module = "tvb.adapters.analyzers.fourier_adapter"
        algorithm_class = "FourierAdapter"

        input_ts_index = time_series_index_factory()

        fft_model = FFTAdapterModel()
        fft_model.time_series = UUID(input_ts_index.gid)
        fft_model.window_function = list(SUPPORTED_WINDOWING_FUNCTIONS)[0]

        input_folder = self.storage_interface.get_project_folder(self.test_project.name)
        view_model_h5_path = h5.store_view_model(fft_model, input_folder)

        # Mock flask.request.files to return a dictionary
        request_mock = mocker.patch.object(flask, 'request', spec={})
        fp = open(view_model_h5_path, 'rb')
        request_mock.files = {
            RequestFileKey.LAUNCH_ANALYZERS_MODEL_FILE.value: FileStorage(fp, os.path.basename(view_model_h5_path))}

        # Mock launch_operation() call and current_user
        mocker.patch.object(OperationService, 'launch_operation')

        operation_gid, status = self.launch_resource.post(project_gid=self.test_project.gid,
                                                          algorithm_module=algorithm_module,
                                                          algorithm_classname=algorithm_class)

        fp.close()

        assert type(operation_gid) is str
        assert len(operation_gid) > 0
    def test_server_launch_operation(self, mocker, time_series_index_factory):
        algorithm_module = "tvb.adapters.analyzers.fourier_adapter"
        algorithm_class = "FourierAdapter"

        input_ts_index = time_series_index_factory()

        fft_model = FFTAdapterModel()
        fft_model.time_series = UUID(input_ts_index.gid)
        fft_model.window_function = list(SUPPORTED_WINDOWING_FUNCTIONS)[0]

        input_folder = self.files_helper.get_project_folder(self.test_project)
        view_model_h5_path = h5.path_for(input_folder, ViewModelH5,
                                         fft_model.gid)

        view_model_h5 = ViewModelH5(view_model_h5_path, fft_model)
        view_model_h5.store(fft_model)
        view_model_h5.close()

        # Mock flask.request.files to return a dictionary
        request_mock = mocker.patch.object(flask, 'request')
        fp = open(view_model_h5_path, 'rb')
        request_mock.files = {
            'file': FileStorage(fp, os.path.basename(view_model_h5_path))
        }

        # Mock launch_operation() call
        mocker.patch.object(OperationService, 'launch_operation')

        operation_gid, status = self.launch_resource.post(
            self.test_project.gid, algorithm_module, algorithm_class)
        fp.close()

        assert type(operation_gid) is str
        assert len(operation_gid) > 0
Exemplo n.º 3
0
def run_analyzer():
    from tvb.interfaces.command.lab import *

    log = get_logger(__name__)

    # This ID of a project needs to exists in DB, and it can be taken from the WebInterface:
    project = dao.get_project_by_id(1)
    # Prepare the Adapter
    adapter_instance = ABCAdapter.build_adapter_from_class(FourierAdapter)

    # Prepare the input algorithms as if they were coming from web UI submit:
    time_series = dao.get_generic_entity(TimeSeriesRegionIndex,
                                         DataTypeMetaData.DEFAULT_SUBJECT,
                                         "subject")
    if len(time_series) < 1:
        log.error("We could not find a compatible TimeSeries Datatype!")

    fourier_model = FFTAdapterModel()
    fourier_model.time_series = time_series[0].gid
    fourier_model.window_function = 'hamming'
    fourier_model.segment_length = 100

    # launch an operation and have the results stored both in DB and on disk
    launched_operation = OperationService().fire_operation(
        adapter_instance,
        project.administrator,
        project.id,
        view_model=fourier_model)[0]

    # wait for the operation to finish
    while not launched_operation.has_finished:
        sleep(5)
        launched_operation = dao.get_operation_by_id(launched_operation.id)

    if launched_operation.status == STATUS_FINISHED:
        fourier_spectrum = dao.get_generic_entity(FourierSpectrumIndex,
                                                  launched_operation.id,
                                                  "fk_from_operation")[0]
        log.info("Fourier Spectrum result is: %s " % fourier_spectrum)
    else:
        log.warning(
            "Operation ended with problems [%s]: [%s]" %
            (launched_operation.status, launched_operation.additional_info))
Exemplo n.º 4
0
def fire_simulation_example(tvb_client_instance):
    logger.info("Requesting projects for logged user")
    projects_of_user = tvb_client_instance.get_project_list()
    assert len(projects_of_user) > 0
    logger.info("TVB has {} projects for this user".format(
        len(projects_of_user)))

    project_gid = projects_of_user[0].gid
    logger.info("Requesting datatypes from project {}...".format(project_gid))
    data_in_project = tvb_client_instance.get_data_in_project(project_gid)
    logger.info("We have {} datatypes".format(len(data_in_project)))

    logger.info("Requesting operations from project {}...".format(project_gid))
    ops_in_project, _ = tvb_client_instance.get_operations_in_project(
        project_gid, 1)
    logger.info("Displayname of the first operation is: {}".format(
        ops_in_project[0].displayname))

    connectivity_gid = None
    datatypes_type = []
    for datatype in data_in_project:
        datatypes_type.append(datatype.type)
        if datatype.type == ConnectivityIndex().display_type:
            connectivity_gid = datatype.gid
    logger.info("The datatypes in project are: {}".format(datatypes_type))

    if connectivity_gid:
        logger.info("Preparing the simulator...")
        simulator = SimulatorAdapterModel()
        simulator.connectivity = connectivity_gid
        simulator.simulation_length = 100

        logger.info("Starting the simulation...")
        operation_gid = tvb_client_instance.fire_simulation(
            project_gid, simulator)

        logger.info("Monitoring the simulation operation...")
        monitor_operation(tvb_client_instance, operation_gid)

        logger.info("Requesting the results of the simulation...")
        simulation_results = tvb_client_instance.get_operation_results(
            operation_gid)
        datatype_names = []
        for datatype in simulation_results:
            datatype_names.append(datatype.name)
        logger.info("The resulted datatype are: {}".format(datatype_names))

        time_series_gid = simulation_results[1].gid
        logger.info("Download the time series file...")
        time_series_path = tvb_client_instance.retrieve_datatype(
            time_series_gid, tvb_client_instance.temp_folder)
        logger.info(
            "The time series file location is: {}".format(time_series_path))

        logger.info("Requesting algorithms to run on time series...")
        algos = tvb_client_instance.get_operations_for_datatype(
            time_series_gid)
        algo_names = [algo.displayname for algo in algos]
        logger.info("Possible algorithms are {}".format(algo_names))

        logger.info("Launch Fourier Analyzer...")
        fourier_model = FFTAdapterModel()
        fourier_model.time_series = time_series_gid
        fourier_model.window_function = 'hamming'

        operation_gid = tvb_client_instance.launch_operation(
            project_gid, FourierAdapter, fourier_model)
        logger.info(
            "Fourier Analyzer operation has launched with gid {}".format(
                operation_gid))

        logger.info("Download the connectivity file...")
        connectivity_path = tvb_client_instance.retrieve_datatype(
            connectivity_gid, tvb_client_instance.temp_folder)
        logger.info(
            "The connectivity file location is: {}".format(connectivity_path))

        logger.info("Loading an entire Connectivity datatype in memory...")
        connectivity = tvb_client_instance.load_datatype_from_file(
            connectivity_path)
        logger.info("Info on current Connectivity: {}".format(
            connectivity.summary_info()))

        logger.info(
            "Loading a chuck from the time series H5 file, as this can be very large..."
        )
        with TimeSeriesH5(time_series_path) as time_series_h5:
            data_shape = time_series_h5.read_data_shape()
            chunk = time_series_h5.read_data_slice(
                tuple([
                    slice(20),
                    slice(data_shape[1]),
                    slice(data_shape[2]),
                    slice(data_shape[3])
                ]))

        assert chunk.shape[0] == 20
        assert chunk.shape[1] == data_shape[1]
        assert chunk.shape[2] == data_shape[2]
        assert chunk.shape[3] == data_shape[3]

        return project_gid, time_series_gid
Exemplo n.º 5
0
        logger.info("The resulted datatype are: {}".format(datatype_names))

        time_series_gid = simulation_results[1].gid
        logger.info("Download the time series file...")
        time_series_path = tvb_client.retrieve_datatype(
            time_series_gid, tvb_client.temp_folder)
        logger.info(
            "The time series file location is: {}".format(time_series_path))

        logger.info("Requesting algorithms to run on time series...")
        algos = tvb_client.get_operations_for_datatype(time_series_gid)
        algo_names = [algo.displayname for algo in algos]
        logger.info("Possible algorithms are {}".format(algo_names))

        logger.info("Launch Fourier Analyzer...")
        fourier_model = FFTAdapterModel()
        fourier_model.time_series = uuid.UUID(time_series_gid)
        fourier_model.window_function = 'hamming'

        algo_dto = None
        for algo in algos:
            if algo.classname == 'FourierAdapter':
                algo_dto = algo

        operation_gid = tvb_client.launch_operation(project_gid,
                                                    algo_dto.module,
                                                    algo_dto.classname,
                                                    fourier_model)
        logger.info(
            "Fourier Analyzer operation has launched with gid {}".format(
                operation_gid))
Exemplo n.º 6
0
        logger.info("The resulted datatype are: {}".format(datatype_names))

        time_series_gid = simulation_results[1].gid
        logger.info("Download the time series file...")
        time_series_path = tvb_client.retrieve_datatype(
            time_series_gid, tvb_client.temp_folder)
        logger.info(
            "The time series file location is: {}".format(time_series_path))

        logger.info("Requesting algorithms to run on time series...")
        algos = tvb_client.get_operations_for_datatype(time_series_gid)
        algo_names = [algo.displayname for algo in algos]
        logger.info("Possible algorithms are {}".format(algo_names))

        logger.info("Launch Fourier Analyzer...")
        fourier_model = FFTAdapterModel()
        fourier_model.time_series = time_series_gid
        fourier_model.window_function = 'hamming'

        operation_gid = tvb_client.launch_operation(project_gid,
                                                    FourierAdapter,
                                                    fourier_model)
        logger.info(
            "Fourier Analyzer operation has launched with gid {}".format(
                operation_gid))

        logger.info("Download the connectivity file...")
        connectivity_path = tvb_client.retrieve_datatype(
            connectivity_gid, tvb_client.temp_folder)
        logger.info(
            "The connectivity file location is: {}".format(connectivity_path))