def test_recursion():
    """
    Program:
       let f(n: i32, data: f32) -> f32 = {
          if (n == 0) {
              return data;
          } else {
              return f(n - 1, log(data));
          }
       }
       f(2, 10000);
    """
    f = relay.Var("f")
    f1 = relay.Var("f1")
    n = relay.Var("n", e.int32)
    data = relay.Var("data", e.float32)
    funcbody = relay.If(
        equal(n, relay.const(0)), data,
        relay.Call(f1, [subtract(n, relay.const(1)),
                        log(data)]))
    value = relay.Function([n, data], funcbody, e.float32, [])
    orig = relay.Let(f, value,
                     relay.Call(
                         f,
                         [relay.const(2), relay.const(10000.0)]))
    dced = run_opt_pass(orig, transform.DeadCodeElimination())
    orig = run_opt_pass(orig, transform.InferType())
    assert graph_equal(dced, orig)
    dced = run_opt_pass(relay.Let(f, value, e.three),
                        transform.DeadCodeElimination())
    assert alpha_equal(dced, e.three)
Exemplo n.º 2
0
def test_tuple_get_item():
    tt = relay.TupleType([e.float32, e.float32])
    t = relay.Var('t', tt)
    a = relay.Var('a')
    g = relay.TupleGetItem(t, 0)
    dced = run_opt_pass(g, transform.DeadCodeElimination())
    assert tvm.ir.structural_equal(Function(free_vars(dced), dced), Function(free_vars(g), g))
    orig = relay.TupleGetItem(relay.Let(a, e.one, t), 0)
    dced = run_opt_pass(orig, transform.DeadCodeElimination())
    assert tvm.ir.structural_equal(Function(free_vars(dced), dced), Function(free_vars(g), g))
Exemplo n.º 3
0
def test_tuple_get_item():
    tt = relay.TupleType([e.float32, e.float32])
    t = relay.Var('t', tt)
    a = relay.Var('a')
    g = relay.TupleGetItem(t, 0)
    dced = transform.OptimizeOnExpr(g, transform.DeadCodeElimination())
    assert alpha_equal(Function(free_vars(dced), dced), Function(free_vars(g), g))
    orig = relay.TupleGetItem(relay.Let(a, e.one, t), 0)
    dced = transform.OptimizeOnExpr(orig, transform.DeadCodeElimination())
    assert alpha_equal(Function(free_vars(dced), dced), Function(free_vars(g), g))
def test_refs():
    """Don't elide expressions with reference create/read/write side effects"""
    before_program = """
    #[version = "0.0.5"]
    def @f(%r) -> int {
        let %v = ref_read(%r);
        let %u = ref_write(%r, %v + 1);
        %v
    }    
    def @main() -> int {
        let %r = ref(0);
        let %y = @f(%r);
        let %z = @f(%r);
        %z
    }
    """

    after_program = before_program

    optimize_and_check(
        before_program,
        after_program,
        [
            transform.InferType(),
            transform.DeadCodeElimination(inline_once=True)
        ],
    )
def test_dead_recursion():
    before_program = """
    #[version = "0.0.5"]
    def @main() {
        let %f = fn (%n: int, %data: int) -> int {
            if (%n == 0) {
                %data
            } else {
                %f(%n - 1, log(%data))
            }
        };
        ()
    }
    """

    after_program = """
    #[version = "0.0.5"]
    def @main() {
        ()
    }
    """

    optimize_and_check(
        before_program, after_program,
        [transform.DeadCodeElimination(),
         transform.InferType()])
def test_impure_op():
    """Don't elide calls to side-effecting operators."""
    before_program = tvm.parser.parse(
        """
        #[version = "0.0.5"]
        def @main() {
           let %size: int64 = cast(1024, dtype="int64");
           let %alignment: int64 = cast(64, dtype="int64");
           let %x = memory.alloc_storage(%size, %alignment, virtual_device=meta[VirtualDevice][0]);
           0
        }
        """,
        "from_string",
        core,
        metatable,
    )

    after_program = tvm.parser.parse(
        """
        #[version = "0.0.5"]
        def @main() {
           let %x = memory.alloc_storage(cast(1024, dtype="int64"),
                                         cast(64, dtype="int64"),
                                         virtual_device=meta[VirtualDevice][0]);
           0
        }
        """,
        "from_string",
        core,
        metatable,
    )

    optimize_and_check(before_program, after_program,
                       transform.DeadCodeElimination(inline_once=True))
Exemplo n.º 7
0
def test_checkpoint_alpha_equal():
    xs = [
        relay.var("x{}".format(i), relay.TensorType((1, ), "float32"))
        for i in range(4)
    ]
    f = relay.Function(
        xs,
        relay.annotation.checkpoint(
            relay.multiply(relay.add(xs[0], xs[1]), relay.add(xs[2], xs[3]))),
    )
    df = transform.gradient(run_infer_type(f))

    # run PE and DCE
    with tvm.transform.PassContext(opt_level=3):
        passes = [
            transform.PartialEvaluate(),
            transform.DeadCodeElimination(inline_once=True)
        ]
        mod = tvm.transform.Sequential(passes)(tvm.IRModule.from_expr(df))
        df = mod["main"]

    df_parsed = tvm.parser.parse_expr("""
        #[version = "0.0.5"]
        fn (%x: Tensor[(1), float32], %y: Tensor[(1), float32],
            %z: Tensor[(1), float32], %w: Tensor[(1), float32])
            ->  (Tensor[(1), float32],
                (Tensor[(1), float32], Tensor[(1), float32],
                 Tensor[(1), float32], Tensor[(1), float32])) {
            %0 = add(%x, %y);
            %1 = add(%z, %w);
            let %x1: Tensor[(1), float32] = multiply(%0, %1);
            let %x2: Tensor[(1), float32] = ones_like(%x1);
            let %x3: Tensor[(1), float32] = add(%x, %y);
            let %x4: Tensor[(1), float32] = add(%z, %w);
            %2 = zeros_like(%x3);
            %3 = multiply(%x2, %x4);
            %4 = collapse_sum_like(%3, %x3);
            let %x5: Tensor[(1), float32] = add(%2, %4);
            %5 = zeros_like(%x4);
            %6 = multiply(%x2, %x3);
            %7 = collapse_sum_like(%6, %x4);
            let %x6: Tensor[(1), float32] = add(%5, %7);
            %8 = zeros_like(%x);
            %9 = collapse_sum_like(%x5, %x);
            %10 = add(%8, %9);
            %11 = zeros_like(%y);
            %12 = collapse_sum_like(%x5, %y);
            %13 = add(%11, %12);
            %14 = zeros_like(%z);
            %15 = collapse_sum_like(%x6, %z);
            %16 = add(%14, %15);
            %17 = zeros_like(%w);
            %18 = collapse_sum_like(%x6, %w);
            %19 = add(%17, %18);
            %20 = (%10, %13, %16, %19);
            (%x1, %20)
        }
        """)

    tvm.ir.assert_structural_equal(df, df_parsed)
def test_inline_into_function():
    """Don't inline across function boundaries."""
    before_program = """
    #[version = "0.0.5"]
    def @main() {
        let %x = 1 + 1;
        let %f = fn (%y: int) -> int {
          let %z = %y + %y;
          %x + %z
        };
        (%f(2), %f(3))
    }
    """

    after_program = """
    #[version = "0.0.5"]
    def @main() {
        let %x = 1 + 1;
        let %f = fn (%y: int) -> int {
          %x + (%y + %y)
        };
        (%f(2), %f(3))
    }
    """

    optimize_and_check(before_program, after_program,
                       transform.DeadCodeElimination(inline_once=True))
Exemplo n.º 9
0
def test_before_partial_eval():
    """Test transformation before PartialEval"""
    mod = tvm.IRModule()

    shape = (10, 10)
    dtype = "float32"
    t = relay.TensorType(shape, dtype)

    x = relay.var("x", t)
    y = relay.var("y", t)

    func = relay.Function([x, y], x * y)
    func = run_infer_type(func)
    back_func = transform.gradient(func)
    back_func = run_infer_type(back_func)

    mod["main"] = back_func
    seq = tvm.transform.Sequential(
        [transform.LazyGradientInit(), transform.PartialEvaluate(), transform.DeadCodeElimination()]
    )
    mod = seq(mod)
    back_func = mod["main"]

    assert mod["main"].checked_type == relay.FuncType(
        [t, t], relay.TupleType([t, relay.TupleType([t, t])])
    )

    ex = create_executor(mod=mod)
    x = rand(dtype, *shape)
    y = rand(dtype, *shape)
Exemplo n.º 10
0
 def destroy_ref(x):
     x = run_infer_type(x)
     x = to_cps(x)
     x = run_infer_type(x)
     y = un_cps(x)
     y = run_infer_type(y)
     x = run_opt_pass(x, transform.Sequential([transform.PartialEvaluate(), transform.DeadCodeElimination(inline_once=True)]))
     assert Feature.fRefCreate not in detect_feature(x)
Exemplo n.º 11
0
def test_checkpoint_alpha_equal_tuple():
    xs = [
        relay.var("x{}".format(i), relay.TensorType((1, ), "float32"))
        for i in range(4)
    ]
    f = relay.Function(
        xs,
        relay.annotation.checkpoint(
            relay.Tuple([relay.add(xs[0], xs[1]),
                         relay.add(xs[2], xs[3])])),
    )
    df = transform.gradient(run_infer_type(f))

    # run PE and DCE
    with tvm.transform.PassContext(opt_level=3):
        # See comment in test_checkpoint_alpha_equal above.
        # TODO(mbs): Revisit once DCE supports dead reference writes.
        passes = [
            transform.PartialEvaluate(),
            transform.DeadCodeElimination(inline_once=True,
                                          ignore_impurity=True),
        ]
        mod = tvm.transform.Sequential(passes)(tvm.IRModule.from_expr(df))
        df = mod["main"]

    df_parsed = tvm.parser.parse_expr("""
        #[version = "0.0.5"]
        fn (%x: Tensor[(1), float32], %y: Tensor[(1), float32],
            %z: Tensor[(1), float32], %w: Tensor[(1), float32])
            -> ((Tensor[(1), float32], Tensor[(1), float32]),
                (Tensor[(1), float32], Tensor[(1), float32],
                 Tensor[(1), float32], Tensor[(1), float32])) {
        let %x1: Tensor[(1), float32] = add(%x, %y) /* ty=Tensor[(1), float32] */;
        let %x2: Tensor[(1), float32] = add(%z, %w) /* ty=Tensor[(1), float32] */;
        let %x3: Tensor[(1), float32] = zeros_like(%x2) /* ty=Tensor[(1), float32] */;
        let %x4: Tensor[(1), float32] = ones_like(%x1) /* ty=Tensor[(1), float32] */;
        %0 = (%x1, %x2);
        %1 = zeros_like(%x) /* ty=Tensor[(1), float32] */;
        %2 = collapse_sum_like(%x4, %x) /* ty=Tensor[(1), float32] */;
        %3 = add(%1, %2) /* ty=Tensor[(1), float32] */;
        %4 = zeros_like(%y) /* ty=Tensor[(1), float32] */;
        %5 = collapse_sum_like(%x4, %y) /* ty=Tensor[(1), float32] */;
        %6 = add(%4, %5) /* ty=Tensor[(1), float32] */;
        %7 = zeros_like(%z) /* ty=Tensor[(1), float32] */;
        %8 = collapse_sum_like(%x3, %z) /* ty=Tensor[(1), float32] */;
        %9 = add(%7, %8) /* ty=Tensor[(1), float32] */;
        %10 = zeros_like(%w) /* ty=Tensor[(1), float32] */;
        %11 = collapse_sum_like(%x3, %w) /* ty=Tensor[(1), float32] */;
        %12 = add(%10, %11) /* ty=Tensor[(1), float32] */;
        %13 = (%3, %6, %9, %12);
        (%0, %13)
        }
        """)

    tvm.ir.assert_structural_equal(df, df_parsed)
Exemplo n.º 12
0
def dcpe(expr, mod=None, grad=False):
    passes = [transform.PartialEvaluate(),
              transform.DeadCodeElimination(inline_once=True)]
    if grad:
        expr = gradient(run_infer_type(expr))
    if mod:
        assert isinstance(expr, Function)
        mod["main"] = expr
        seq = transform.Sequential(passes)
        mod = seq(mod)
        return mod["main"]
    return run_opt_pass(expr, passes)
Exemplo n.º 13
0
def test_checkpoint_alpha_equal_tuple():
    xs = [
        relay.var("x{}".format(i), relay.TensorType((1, ), "float32"))
        for i in range(4)
    ]
    f = relay.Function(
        xs,
        relay.annotation.checkpoint(
            relay.Tuple([relay.add(xs[0], xs[1]),
                         relay.add(xs[2], xs[3])])))
    df = transform.gradient(run_infer_type(f))

    # run PE and DCE
    with transform.PassContext(opt_level=3):
        passes = [
            transform.PartialEvaluate(),
            transform.DeadCodeElimination(inline_once=True)
        ]
        mod = transform.Sequential(passes)(tvm.IRModule.from_expr(df))
        df = mod["main"]

    df_parsed = relay.parser.fromtext("""
        v0.0.4
        fn (%x: Tensor[(1), float32], %y: Tensor[(1), float32],
            %z: Tensor[(1), float32], %w: Tensor[(1), float32])
            -> ((Tensor[(1), float32], Tensor[(1), float32]),
                (Tensor[(1), float32], Tensor[(1), float32],
                 Tensor[(1), float32], Tensor[(1), float32])) {
        let %x1: Tensor[(1), float32] = add(%x, %y) /* ty=Tensor[(1), float32] */;
        let %x2: Tensor[(1), float32] = add(%z, %w) /* ty=Tensor[(1), float32] */;
        let %x3: Tensor[(1), float32] = zeros_like(%x2) /* ty=Tensor[(1), float32] */;
        let %x4: Tensor[(1), float32] = ones_like(%x1) /* ty=Tensor[(1), float32] */;
        %0 = (%x1, %x2);
        %1 = zeros_like(%x) /* ty=Tensor[(1), float32] */;
        %2 = collapse_sum_like(%x4, %x) /* ty=Tensor[(1), float32] */;
        %3 = add(%1, %2) /* ty=Tensor[(1), float32] */;
        %4 = zeros_like(%y) /* ty=Tensor[(1), float32] */;
        %5 = collapse_sum_like(%x4, %y) /* ty=Tensor[(1), float32] */;
        %6 = add(%4, %5) /* ty=Tensor[(1), float32] */;
        %7 = zeros_like(%z) /* ty=Tensor[(1), float32] */;
        %8 = collapse_sum_like(%x3, %z) /* ty=Tensor[(1), float32] */;
        %9 = add(%7, %8) /* ty=Tensor[(1), float32] */;
        %10 = zeros_like(%w) /* ty=Tensor[(1), float32] */;
        %11 = collapse_sum_like(%x3, %w) /* ty=Tensor[(1), float32] */;
        %12 = add(%10, %11) /* ty=Tensor[(1), float32] */;
        %13 = (%3, %6, %9, %12);
        (%0, %13)
        }
        """)

    relay.analysis.assert_alpha_equal(df, df_parsed)
Exemplo n.º 14
0
def dcpe(expr, mod=None, grad=False):
    passes = [
        transform.PartialEvaluate(),
        transform.DeadCodeElimination(inline_once=True)
    ]
    if grad:
        expr = gradient(expr)
    if mod:
        assert isinstance(expr, Function)
        mod[mod.entry_func] = expr
        seq = transform.Sequential(passes)
        mod = seq(mod)
        return mod[mod.entry_func]
    return transform.OptimizeOnExpr(expr, passes)
def test_dead_let():
    before_program = """
    #[version = "0.0.5"]
    def @main(%z: int) {
        let %x = 1;
        %z
    }
    """
    after_program = """
    #[version = "0.0.5"]
    def @main(%z: int) {
        %z
    }
    """
    optimize_and_check(before_program, after_program, transform.DeadCodeElimination())
Exemplo n.º 16
0
def test_recursion():
    """
    Program:
       let f(n: i32, data: f32) -> f32 = {
          if (n == 0) {
              return data;
          } else {
              return f(n - 1, log(data));
          }
       }
       f(2, 10000);
    """
    orig = use_f(lambda f: relay.Call(f, [relay.const(2), relay.const(10000.0)]))
    dced = run_opt_pass(orig, transform.DeadCodeElimination())
    orig = run_opt_pass(orig, transform.InferType())
    tvm.ir.assert_structural_equal(dced, orig)
def test_tuple_get_item():
    before_program = """
    #[version = "0.0.5"]
    def @main() {
        let %a = 100;
        (1, 2, 3, 4).0
    }
    """

    after_program = """
    #[version = "0.0.5"]
    def @main() {
        (1, 2, 3, 4).0
    }
    """

    optimize_and_check(before_program, after_program, transform.DeadCodeElimination())
def test_nested_let():
    before_program = """
    #[version = "0.0.5"]
    def @main(%d: int, %b: int) {
        let %a = %b;
        let %c = %d;
        %c
    }
    """
    after_program = """
    #[version = "0.0.5"]
    def @main(%d: int, %b: int) {
        let %c = %d;
        %c
    }
    """
    optimize_and_check(before_program, after_program, transform.DeadCodeElimination())
Exemplo n.º 19
0
 def destroy_ref(x):
     x = run_infer_type(x)
     x = to_cps(x)
     x = run_infer_type(x)
     y = un_cps(x)
     y = run_infer_type(y)
     # TODO(mbs): Revisit once DCE can eliminate dead writes.
     x = run_opt_pass(
         x,
         tvm.transform.Sequential(
             [
                 transform.PartialEvaluate(),
                 transform.InferType(),
                 transform.DeadCodeElimination(inline_once=True, ignore_impurity=True),
             ]
         ),
     )
     assert Feature.fRefCreate not in detect_feature(x)
def test_add_with_let():
    before_program = """
    #[version = "0.0.5"]
    def @main() {
        (let %a = 1; 3) + 2
    }
    """

    after_program = """
    #[version = "0.0.5"]
    def @main() {
        3 + 2
    }
    """

    optimize_and_check(
        before_program, after_program, [transform.DeadCodeElimination(), transform.InferType()]
    )
def test_after_partial_eval():
    """Test transformation following reverse mode ad and PartialEval"""
    mod = tvm.IRModule()

    shape = (10, 10)
    dtype = "float32"
    t = relay.TensorType(shape, dtype)

    x = relay.var("x", t)
    y = relay.var("y", t)

    func = relay.Function([x, y], (x * y) * relay.const(np.ones(shape, dtype)))
    func = run_infer_type(func)
    back_func = transform.gradient(func)
    back_func = run_infer_type(back_func)

    mod["main"] = back_func
    back_func = mod["main"]

    seq = tvm.transform.Sequential(
        [
            transform.PartialEvaluate(),
            transform.InferType(),
            transform.LazyGradientInit(),
            transform.InferType(),
            transform.DeadCodeElimination(),
            transform.InferType(),
        ]
    )

    mod = seq(mod)

    assert mod["main"].checked_type == relay.FuncType(
        [t, t], relay.TupleType([t, relay.TupleType([t, t])])
    )

    x = rand(dtype, *shape)
    y = rand(dtype, *shape)
    (forward), (grad_x, grad_y,) = create_executor(mod=mod).evaluate(
        back_func
    )(x, y)
    assert_allclose(forward.numpy(), x.numpy() * y.numpy())
    assert_allclose(grad_x.numpy(), y.numpy())
    assert_allclose(grad_y.numpy(), x.numpy())
Exemplo n.º 22
0
def test_impure_func():
    """Don't elide calls to side-effecting functions."""
    before_program = tvm.parser.parse(
        """
        #[version = "0.0.5"]
        def @f() -> int {
           let %size: int64 = cast(1024, dtype="int64");
           let %alignment: int64 = cast(64, dtype="int64");
           let %x = memory.alloc_storage(%size, %alignment, se_scope=meta[SEScope][0]);
           0
        }
        def @main() -> int {
           let %y = @f();
           0
        }
        """,
        "from_string",
        core,
        metatable,
    )

    after_program = tvm.parser.parse(
        """
        #[version = "0.0.5"]
        def @f() -> int {
           let %x = memory.alloc_storage(cast(1024, dtype="int64"),
                                         cast(64, dtype="int64"),
                                         se_scope=meta[SEScope][0]);
           0
        }
        def @main() -> int {
            let %y = @f();
            0
        }
        """,
        "from_string",
        core,
        metatable,
    )

    optimize_and_check(before_program, after_program,
                       transform.DeadCodeElimination(inline_once=True))
Exemplo n.º 23
0
def test_used_let():
    orig = relay.Let(e.c, e.one, e.c + e.c)
    orig = run_opt_pass(orig, transform.DeadCodeElimination())
    expected = relay.Let(e.c, e.one, e.c + e.c)
    assert tvm.ir.structural_equal(Function([], orig), Function([], expected))
Exemplo n.º 24
0
def test_let():
    orig = relay.Let(e.x, e.y, e.z)
    orig = run_opt_pass(orig, transform.DeadCodeElimination())
    assert tvm.ir.structural_equal(Function(free_vars(orig), orig),
                                   Function([e.z], e.z))
Exemplo n.º 25
0
def test_complexity():
    g = inception_v3.get_net(1, 1000, (3, 299, 299), "float32")
    run_opt_pass(g, transform.DeadCodeElimination())
Exemplo n.º 26
0
def test_op_let():
    dced = run_opt_pass(add(relay.Let(e.a, e.one, e.three), e.two),
                        transform.DeadCodeElimination())
    assert tvm.ir.structural_equal(dced, add(e.three, e.two))
Exemplo n.º 27
0
def test_recursion_dead():
    x = relay.Let(e.a, e.one, e.three)
    dced_f = lambda f: x
    dced = run_opt_pass(use_f(dced_f), transform.DeadCodeElimination())
    assert tvm.ir.structural_equal(dced, e.three)
Exemplo n.º 28
0
def test_inline():
    orig = relay.Let(e.a, e.b, relay.Let(e.c, e.d, e.c))
    orig = run_opt_pass(orig, transform.DeadCodeElimination(True))
    tvm.ir.assert_structural_equal(Function(free_vars(orig), orig),
                                   Function([e.d], e.d))
Exemplo n.º 29
0
def test_chain_unused_let():
    orig = relay.Let(e.a, e.b, relay.Let(e.c, e.d, e.e))
    orig = run_opt_pass(orig, transform.DeadCodeElimination())
    assert tvm.ir.structural_equal(Function(free_vars(orig), orig),
                                   Function([e.e], e.e))
def test_complexity():
    mod = transform.InferType()(tvm.IRModule.from_expr(
        inception_v3.get_net(1, 1000, (3, 299, 299), "float32")))

    optimize_and_check(mod, mod,
                       transform.DeadCodeElimination(inline_once=True))