Exemplo n.º 1
0
def test_argmax():
    ib = relay.ir_builder.IRBuilder()
    n, c, h, w = tvm.var("n"), tvm.var("c"), tvm.var("h"), tvm.var("w")
    x = ib.param("x", relay.ty.TensorType((n, c, h, w), "float32"))
    with ib.function(x) as func:
        ib.ret(relay.argmax(x, axis=(1, )))
    ib.ret(func)
    func = relay.ir_pass.infer_type(ib.env, func.to_func())
    ftype = func.checked_type
    assert ftype.ret_type == relay.ty.TensorType((n, h, w), "int32")

    ib = relay.ir_builder.IRBuilder()
    n, c, h, w = tvm.var("n"), tvm.var("c"), tvm.var("h"), tvm.var("w")
    x = ib.param("x", relay.ty.TensorType((n, c, h, w), "float32"))
    with ib.function(x) as func:
        ib.ret(relay.argmax(x, axis=(2, ), keepdims=True))
    ib.ret(func)

    func = relay.ir_pass.infer_type(ib.env, func.to_func())
    ftype = func.checked_type
    assert ftype.ret_type == relay.ty.TensorType((n, c, 1, w), "int32")

    ib = relay.ir_builder.IRBuilder()
    n, c, h, w = tvm.var("n"), tvm.var("c"), tvm.var("h"), tvm.var("w")
    x = ib.param("x", relay.ty.TensorType((n, c, h, w), "float32"))
    with ib.function(x) as func:
        ib.ret(relay.argmax(x, axis=(2, ), keepdims=True, exclude=True))
    ib.ret(func)

    func = relay.ir_pass.infer_type(ib.env, func.to_func())
    ftype = func.checked_type
    assert ftype.ret_type == relay.ty.TensorType((1, 1, h, 1), "int32")
Exemplo n.º 2
0
def test_arg_reduce():
    for op in [relay.argmax, relay.argmin]:
        n, c, h, w = 10, 20, 3, 4
        x = relay.var("x", relay.ty.TensorType((n, c, h, w), "float32"))
        z = relay.argmax(x, axis=(1, ))
        "axis=" in z.astext()
        zz = relay.ir_pass.infer_type(z)
        assert zz.checked_type == relay.ty.TensorType((n, h, w), "int32")
        n, c, h, w = tvm.var("n"), tvm.var("c"), tvm.var("h"), tvm.var("w")
        x = relay.var("x", relay.ty.TensorType((n, c, h, w), "float32"))
        z = relay.argmax(x, axis=(2, ), keepdims=True)
        zz = relay.ir_pass.infer_type(z)
        assert zz.checked_type == relay.ty.TensorType((n, c, 1, w), "int32")

        n, c, h, w = tvm.var("n"), tvm.var("c"), tvm.var("h"), tvm.var("w")
        x = relay.var("x", relay.ty.TensorType((n, c, h, w), "float32"))
        z = relay.argmax(x, axis=(2, ), keepdims=True, exclude=True)
        zz = relay.ir_pass.infer_type(z)
        assert zz.checked_type == relay.ty.TensorType((1, 1, h, 1), "int32")
Exemplo n.º 3
0
def relay_argmax(c, v, dims):
    """Implementation of argmax for Relay."""
    v = c.ref(v)
    assert dims.is_constant(tuple)
    return relay.cast(relay.argmax(v, axis=dims.value), "int64")
Exemplo n.º 4
0
def get_net(batch_size, image_shape, num_classes, dtype):
    height = image_shape[1]
    width = image_shape[2]
    data_shape = (batch_size,) + image_shape
    net = relay.var("data", shape=data_shape, dtype=dtype)

    net = conv_3x3(net, 3, 64, "conv1_1")
    net = conv_3x3(net, 64, 64, "conv1_2")
    net = relay.nn.max_pool2d(net, pool_size=(2, 2), strides=(2, 2), ceil_mode=True)

    net = conv_3x3(net, 64, 128, "conv2_1")
    net = conv_3x3(net, 64, 128, "conv2_2")
    net = relay.nn.max_pool2d(net, pool_size=(2, 2), strides=(2, 2), ceil_mode=True)

    net = conv_3x3(net, 128, 256, "conv3_1")
    net = conv_3x3(net, 256, 256, "conv3_2")
    net = conv_3x3(net, 256, 256, "conv3_3")
    net = relay.nn.max_pool2d(net, pool_size=(2, 2), strides=(2, 2), ceil_mode=True)

    net = conv_3x3(net, 256, 512, "conv4_1")
    net = conv_3x3(net, 512, 512, "conv4_2")
    net = conv_3x3(net, 512, 512, "conv4_3")
    net = relay.nn.max_pool2d(net, pool_size=(2, 2), strides=(2, 2), ceil_mode=True)

    net = conv_3x3(net, 512, 512, "conv5_1")
    net = conv_3x3(net, 512, 512, "conv5_2")
    net = conv_3x3(net, 512, 512, "conv5_3")

    net = relay.nn.dropout(net, rate=0.5)

    net = conv_3x3(net, 512, 72, "conv6", activation=False)
    net = relay.transpose(net, (0, 2, 3, 1))

    num_class_probs = 9 * 3
    num_confidence_scores = 9
    #num_box_delta = 9 * 4
    pred_class_probs, pred_conf, pred_box_delta = relay.split(net,
            (num_class_probs, num_class_probs + num_confidence_scores),
            axis=-1)

    # Probability
    pred_class_probs = relay.reshape(pred_class_probs, (-1, 3))
    pred_class_probs = relay.nn.softmax(pred_class_probs)
    pred_class_probs = relay.reshape(pred_class_probs, (batch_size, -1, 3))

    # Confidence
    pred_conf = relay.sigmoid(pred_conf)
    pred_conf = relay.reshape(pred_conf, (batch_size, -1, 1))

    # Bbox_delta
    pred_box_delta = relay.reshape(pred_box_delta, (batch_size, -1, 4))
    delta_x, delta_y, delta_w, delta_h = relay.split(pred_box_delta, (1, 2, 3), axis=2)
    delta_x = relay.reshape(delta_x, (batch_size, -1))
    delta_y = relay.reshape(delta_y, (batch_size, -1))
    delta_w = relay.reshape(delta_w, (batch_size, -1))
    delta_h = relay.reshape(delta_h, (batch_size, -1))

    anchor_box = set_anchors(height, width)
    anchor_x = relay.Constant(tvm.nd.array(anchor_box[:, 0]))
    anchor_y = relay.Constant(tvm.nd.array(anchor_box[:, 1]))
    anchor_w = relay.Constant(tvm.nd.array(anchor_box[:, 2]))
    anchor_h = relay.Constant(tvm.nd.array(anchor_box[:, 3]))

    box_center_x = anchor_x + delta_x * anchor_w
    box_center_y = anchor_y + delta_y * anchor_h
    '''
    box_width    = anchor_w * relay.exp(delta_w)
    box_height   = anchor_h * relay.exp(delta_h)
    '''
    box_width    = anchor_w + safe_exp(delta_w)
    box_height   = anchor_h + safe_exp(delta_h)

    xmins, ymins, xmaxs, ymaxs = bbox_transform(box_center_x, box_center_y, box_width, box_height)
    xmins = relay.minimum(relay.maximum(relay.const(0.0), xmins), relay.const(width - 1.0))
    ymins = relay.minimum(relay.maximum(relay.const(0.0), ymins), relay.const(height - 1.0))
    xmaxs = relay.maximum(relay.minimum(relay.const(width - 1.0), xmaxs), relay.const(0.0))
    ymaxs = relay.maximum(relay.minimum(relay.const(height - 1.0), ymaxs), relay.const(0.0))

    det_boxes = relay.stack(bbox_transform_inv(xmins, ymins, xmaxs, ymaxs), axis=-1)

    probs = relay.multiply(pred_class_probs, pred_conf)
    det_probs = relay.max(probs, axis=2)
    det_class = relay.argmax(probs, axis=2)

    out = relay.Tuple([det_boxes, det_probs, det_class])
    args = relay.analysis.free_vars(out)
    
    return relay.Function(args, out)