Exemplo n.º 1
0
def benchmark_loop_first_variants():

    import ubelt as ub
    basis = {
        'num_items': [10, 100, 1000, 10000, 100000],
    }
    data_grid = ub.named_product(**basis)

    rows = []

    import timerit
    ti = timerit.Timerit(100, bestof=10, verbose=2)

    for data_kw in data_grid:
        items = list(range(data_kw['num_items']))

        method_name = 'loop_first'
        for timer in ti.reset(method_name):
            with timer:
                method_loop_first(items)
        rows.append({
            'num_items': data_kw['num_items'],
            'method_name': method_name,
            'mean': ti.mean()
        })

        method_name = 'loop_first2'
        for timer in ti.reset(method_name):
            with timer:
                method_loop_first2(items)
        rows.append({
            'num_items': data_kw['num_items'],
            'method_name': method_name,
            'mean': ti.mean()
        })

        method_name = 'enumerate'
        for timer in ti.reset(method_name):
            with timer:
                method_enumerate(items)

        rows.append({
            'num_items': data_kw['num_items'],
            'method_name': method_name,
            'mean': ti.mean()
        })

    print('ti.rankings = {}'.format(ub.repr2(ti.rankings, nl=2, align=':')))
    return rows
Exemplo n.º 2
0
def run_benchmark_renormalization():
    """
    See if we can renormalize probabilities after update with a faster method
    that maintains memory a bit better

    Example:
        >>> import sys, ubelt
        >>> sys.path.append(ubelt.expandpath('~/misc/tests/python'))
        >>> from bench_renormalization import *  # NOQA
        >>> run_benchmark_renormalization()
    """
    import ubelt as ub
    import xdev
    import pathlib
    import timerit

    fpath = pathlib.Path('~/misc/tests/python/renormalize_cython.pyx').expanduser()
    renormalize_cython = xdev.import_module_from_pyx(fpath, annotate=True,
                                                     verbose=3, recompile=True)

    xdev.profile_now(renormalize_demo_v1)(1000, 100)
    xdev.profile_now(renormalize_demo_v2)(1000, 100)
    xdev.profile_now(renormalize_demo_v3)(1000, 100)
    xdev.profile_now(renormalize_demo_v4)(1000, 100)

    func_list = [
        # renormalize_demo_v1,
        renormalize_demo_v2,
        # renormalize_demo_v3,
        # renormalize_demo_v4,
        renormalize_cython.renormalize_demo_cython_v1,
        renormalize_cython.renormalize_demo_cython_v2,
        renormalize_cython.renormalize_demo_cython_v3,
    ]
    methods = {f.__name__: f for f in func_list}
    for key, method in methods.items():
        with timerit.Timer(label=key, verbose=0) as t:
            method(1000, 100)
        print(f'{key:<30} {t.toc():0.6f}')

    arg_basis = {
        'T': [10, 20,  30,  50],
        'D': [10, 50, 100, 300],
    }
    args_grid = []
    for argkw in list(ub.named_product(arg_basis)):
        if argkw['T'] <= argkw['D']:
            arg_basis['size'] = argkw['T'] * argkw['D']
            args_grid.append(argkw)

    ti = timerit.Timerit(100, bestof=10, verbose=2)

    measures = []

    for method_name, method in methods.items():
        for argkw in args_grid:
            row = ub.dict_union({'method': method_name}, argkw)
            key = ub.repr2(row, compact=1)
            argkey = ub.repr2(argkw, compact=1)

            kwargs = ub.dict_subset(argkw, ['T', 'D'])
            for timer in ti.reset('time'):
                with timer:
                    method(**kwargs)

            row['mean'] = ti.mean()
            row['min'] = ti.min()
            row['key'] = key
            row['argkey'] = argkey
            measures.append(row)

    import pandas as pd
    df = pd.DataFrame(measures)
    import kwplot
    sns = kwplot.autosns()

    kwplot.figure(fnum=1, pnum=(1, 2, 1), docla=True)
    sns.lineplot(data=df, x='D', y='min', hue='method', style='method')
    kwplot.figure(fnum=1, pnum=(1, 2, 2), docla=True)
    sns.lineplot(data=df, x='T', y='min', hue='method', style='method')

    p = (df.pivot(['method'], ['argkey'], ['mean']))
    print(p.mean(axis=1).sort_values())
Exemplo n.º 3
0
def benchmark_template():
    import ubelt as ub
    import pandas as pd
    import timerit

    def method1(x, y, z):
        ret = []
        for i in range((x + y) * z):
            ret.append(i)
        return ret

    def method2(x, y, z):
        ret = [i for i in range((x + y) * z)]
        return ret

    method_lut = locals()  # can populate this some other way

    # Change params here to modify number of trials
    ti = timerit.Timerit(100, bestof=10, verbose=1)

    # if True, record every trail run and show variance in seaborn
    # if False, use the standard timerit min/mean measures
    RECORD_ALL = True

    # These are the parameters that we benchmark over
    basis = {
        'method': ['method1', 'method2'],
        'x': list(range(7)),
        'y': [0, 100],
        'z': [2, 3]
        # 'param_name': [param values],
    }
    xlabel = 'x'
    # Set these to param labels that directly transfer to method kwargs
    kw_labels = ['x', 'y', 'z']
    # Set these to empty lists if they are not used
    group_labels = {
        'style': ['y'],
        'size': ['z'],
    }
    group_labels['hue'] = list((ub.oset(basis) - {xlabel}) -
                               set.union(*map(set, group_labels.values())))
    grid_iter = list(ub.named_product(basis))

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        group_keys = {}
        for gname, labels in group_labels.items():
            group_keys[gname + '_key'] = ub.repr2(ub.dict_isect(
                params, labels),
                                                  compact=1,
                                                  si=1)
        key = ub.repr2(params, compact=1, si=1)
        # Make any modifications you need to compute input kwargs for each
        # method here.
        kwargs = ub.dict_isect(params.copy(), kw_labels)
        method = method_lut[params['method']]
        # Timerit will run some user-specified number of loops.
        # and compute time stats with similar methodology to timeit
        for timer in ti.reset(key):
            # Put any setup logic you dont want to time here.
            # ...
            with timer:
                # Put the logic you want to time here
                method(**kwargs)

        if RECORD_ALL:
            # Seaborn will show the variance if this is enabled, otherwise
            # use the robust timerit mean / min times
            chunk_iter = ub.chunks(ti.times, ti.bestof)
            times = list(map(min, chunk_iter))  # TODO: timerit method for this
            for time in times:
                row = {
                    # 'mean': ti.mean(),
                    'time': time,
                    'key': key,
                    **group_keys,
                    **params,
                }
                rows.append(row)
        else:
            row = {
                'mean': ti.mean(),
                'min': ti.min(),
                'key': key,
                **group_keys,
                **params,
            }
            rows.append(row)

    time_key = 'time' if RECORD_ALL else 'min'

    # The rows define a long-form pandas data array.
    # Data in long-form makes it very easy to use seaborn.
    data = pd.DataFrame(rows)
    data = data.sort_values(time_key)

    if RECORD_ALL:
        # Show the min / mean if we record all
        min_times = data.groupby('key').min().rename({'time': 'min'}, axis=1)
        mean_times = data.groupby('key')[['time'
                                          ]].mean().rename({'time': 'mean'},
                                                           axis=1)
        stats_data = pd.concat([min_times, mean_times], axis=1)
        stats_data = stats_data.sort_values('min')
    else:
        stats_data = data

    USE_OPENSKILL = 1
    if USE_OPENSKILL:
        # Lets try a real ranking method
        # https://github.com/OpenDebates/openskill.py
        import openskill
        method_ratings = {m: openskill.Rating() for m in basis['method']}

    other_keys = sorted(
        set(stats_data.columns) -
        {'key', 'method', 'min', 'mean', 'hue_key', 'size_key', 'style_key'})
    for params, variants in stats_data.groupby(other_keys):
        variants = variants.sort_values('mean')
        ranking = variants['method'].reset_index(drop=True)

        mean_speedup = variants['mean'].max() / variants['mean']
        stats_data.loc[mean_speedup.index, 'mean_speedup'] = mean_speedup
        min_speedup = variants['min'].max() / variants['min']
        stats_data.loc[min_speedup.index, 'min_speedup'] = min_speedup

        if USE_OPENSKILL:
            # The idea is that each setting of parameters is a game, and each
            # "method" is a player. We rank the players by which is fastest,
            # and update their ranking according to the Weng-Lin Bayes ranking
            # model. This does not take the fact that some "games" (i.e.
            # parameter settings) are more important than others, but it should
            # be fairly robust on average.
            old_ratings = [[r] for r in ub.take(method_ratings, ranking)]
            new_values = openskill.rate(old_ratings)  # Not inplace
            new_ratings = [openskill.Rating(*new[0]) for new in new_values]
            method_ratings.update(ub.dzip(ranking, new_ratings))

    print('Statistics:')
    print(stats_data)

    if USE_OPENSKILL:
        from openskill import predict_win
        win_prob = predict_win([[r] for r in method_ratings.values()])
        skill_agg = pd.Series(ub.dzip(method_ratings.keys(),
                                      win_prob)).sort_values(ascending=False)
        print('Aggregated Rankings =\n{}'.format(skill_agg))

    plot = True
    if plot:
        # import seaborn as sns
        # kwplot autosns works well for IPython and script execution.
        # not sure about notebooks.
        import kwplot
        sns = kwplot.autosns()
        plt = kwplot.autoplt()

        plotkw = {}
        for gname, labels in group_labels.items():
            if labels:
                plotkw[gname] = gname + '_key'

        # Your variables may change
        ax = kwplot.figure(fnum=1, doclf=True).gca()
        sns.lineplot(data=data,
                     x=xlabel,
                     y=time_key,
                     marker='o',
                     ax=ax,
                     **plotkw)
        ax.set_title('Benchmark Name')
        ax.set_xlabel('Size (todo: A better x-variable description)')
        ax.set_ylabel('Time (todo: A better y-variable description)')
        # ax.set_xscale('log')
        # ax.set_yscale('log')

        try:
            __IPYTHON__
        except NameError:
            plt.show()
Exemplo n.º 4
0
def benchmark_repeat_vs_reduce_mul():
    import ubelt as ub
    import pandas as pd
    import timerit

    def reduce_daq_rec(func, arrs):
        if len(arrs) == 1:
            return arrs[0]
        if len(arrs) == 2:
            return func(arrs[0], arrs[1])
        elif len(arrs) == 3:
            return func(func(arrs[0], arrs[1]), arrs[3])
        else:
            arrs1 = arrs[0::2]
            arrs2 = arrs[1::2]
            res1 = reduce_daq_rec(func, arrs1)
            res2 = reduce_daq_rec(func, arrs2)
            res = func(res1, res2)
        return res

    def reduce_daq_iter(func, arrs):
        """
        https://www.baeldung.com/cs/convert-recursion-to-iteration
        https://stackoverflow.com/questions/159590/way-to-go-from-recursion-to-iteration
        arrs = [2, 3, 5, 7, 11, 13, 17, 21]
        """
        raise NotImplementedError
        # TODO: make the iterative version
        from collections import deque
        empty_result = None
        stack = deque([(arrs, empty_result)])
        idx = 0
        while stack:
            print('----')
            print('stack = {}'.format(ub.repr2(list(stack), nl=1)))
            arrs0, result = stack.pop()
            if len(arrs0) == 0:
                raise Exception
            if result is not None:
                # raise Exception
                results = [result]
                while stack:
                    next_arrs0, next_result = stack.pop()
                    if next_result is None:
                        break
                    else:
                        results.append(next_result)
                if results:
                    if len(results) == 1:
                        stack.append((results, results[0]))
                    else:
                        stack.append((results, None))
                if next_result is None:
                    stack.append((next_arrs0, None))
            elif result is None:
                if len(arrs0) == 1:
                    result = arrs0[0]
                    stack.append((arrs0, result))
                    # return arrs0[0]
                if len(arrs0) == 2:
                    result = func(arrs0[0], arrs0[1])
                    stack.append((arrs0, result))
                elif len(arrs0) == 3:
                    result = func(func(arrs0[0], arrs0[1]), arrs0[3])
                    stack.append((arrs0, result))
                else:
                    arrs01 = arrs0[0::2]
                    arrs02 = arrs0[1::2]
                    stack.append((arrs0, empty_result))
                    stack.append((arrs01, empty_result))
                    stack.append((arrs02, empty_result))
                    # res1 = reduce_daq_rec(func, arrs01)
                    # res2 = reduce_daq_rec(func, arrs2)
                    # res = func(res1, res2)
            idx += 1
            if idx > 10:
                raise Exception
        return res

    def method_daq_rec(arrs):
        return reduce_daq_rec(np.multiply, arrs)

    def method_repeat(arrs):
        """
        helper code:
            arr_names = ['a{:02d}'.format(idx) for idx in range(1, 32 + 1)]
            lhs = ', '.join(arr_names)
            rhs = ' * '.join(arr_names)
            print(f'{lhs} = arrs')
            print(f'ret = {rhs}')
        """
        # Hard coded pure python syntax for multiplying
        if len(arrs) == 4:
            a01, a02, a03, a04 = arrs
            ret = a01 * a02 * a03 * a04
        elif len(arrs) == 8:
            a01, a02, a03, a04, a05, a06, a07, a08 = arrs
            ret = a01 * a02 * a03 * a04 * a05 * a06 * a07 * a08
        elif len(arrs) == 32:
            a01, a02, a03, a04, a05, a06, a07, a08, a09, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31, a32 = arrs
            ret = a01 * a02 * a03 * a04 * a05 * a06 * a07 * a08 * a09 * a10 * a11 * a12 * a13 * a14 * a15 * a16 * a17 * a18 * a19 * a20 * a21 * a22 * a23 * a24 * a25 * a26 * a27 * a28 * a29 * a30 * a31 * a32
        return ret

    def method_reduce(arrs):
        ret = np.multiply.reduce(arrs)
        return ret

    def method_stack(arrs):
        stacked = np.stack(arrs)
        ret = stacked.prod(axis=0)
        return ret

    method_lut = locals()  # can populate this some other way

    ti = timerit.Timerit(10000, bestof=10, verbose=2)

    basis = {
        'method':
        ['method_repeat', 'method_reduce', 'method_stack', 'method_daq_rec'],
        'arr_size': [10, 100, 1000, 10000],
        'num_arrs': [4, 8, 32],
    }
    xlabel = 'arr_size'
    kw_labels = []
    group_labels = {
        'style': ['num_arrs'],
        'size': [],
    }
    group_labels['hue'] = list((ub.oset(basis) - {xlabel}) -
                               set.union(*map(set, group_labels.values())))
    grid_iter = list(ub.named_product(basis))

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        group_keys = {}
        for gname, labels in group_labels.items():
            group_keys[gname + '_key'] = ub.repr2(ub.dict_isect(
                params, labels),
                                                  compact=1,
                                                  si=1)
        key = ub.repr2(params, compact=1, si=1)
        kwargs = ub.dict_isect(params.copy(), kw_labels)

        arr_size = params['arr_size']
        num_arrs = params['num_arrs']

        arrs = []
        for _ in range(num_arrs):
            arr = np.random.rand(arr_size)
            arrs.append(arr)
        kwargs['arrs'] = arrs
        method = method_lut[params['method']]
        # Timerit will run some user-specified number of loops.
        # and compute time stats with similar methodology to timeit
        for timer in ti.reset(key):
            # Put any setup logic you dont want to time here.
            # ...
            with timer:
                # Put the logic you want to time here
                method(**kwargs)
        row = {
            'mean': ti.mean(),
            'min': ti.min(),
            'key': key,
            **group_keys,
            **params,
        }
        rows.append(row)

    # The rows define a long-form pandas data array.
    # Data in long-form makes it very easy to use seaborn.
    data = pd.DataFrame(rows)
    data = data.sort_values('min')
    print(data)

    plot = True
    if plot:
        # import seaborn as sns
        # kwplot autosns works well for IPython and script execution.
        # not sure about notebooks.
        import kwplot
        sns = kwplot.autosns()

        plotkw = {}
        for gname, labels in group_labels.items():
            if labels:
                plotkw[gname] = gname + '_key'

        # Your variables may change
        ax = kwplot.figure(fnum=1, doclf=True).gca()
        sns.lineplot(data=data, x=xlabel, y='min', marker='o', ax=ax, **plotkw)
        ax.set_title('Benchmark')
        ax.set_xlabel('Array Size')
        ax.set_ylabel('Time')
Exemplo n.º 5
0
def benchmark_nested_break():
    """
    There are several ways to do a nested break, but which one is best?

    https://twitter.com/nedbat/status/1515345787563220996
    """
    import ubelt as ub
    import pandas as pd
    import timerit
    import itertools as it

    def method1_itertools(iter1, iter2):
        for i, j in it.product(iter1, iter2):
            if i == 20 and j == 20:
                break

    def method2_except(iter1, iter2):
        class Found(Exception):
            pass
        try:
            for i in iter1:
                for j in iter2:
                    if i == 20 and j == 20:
                        raise Found
        except Found:
            pass

    class FoundPredef(Exception):
        pass

    def method2_5_except_predef(iter1, iter2):
        try:
            for i in iter1:
                for j in iter2:
                    if i == 20 and j == 20:
                        raise FoundPredef
        except FoundPredef:
            pass

    def method3_gendef(iter1, iter2):
        def genfunc():
            for i in iter1:
                for j in iter2:
                    yield i, j

        for i, j in genfunc():
            if i == 20 and j == 20:
                break

    def method4_genexp(iter1, iter2):
        genexpr = ((i, j) for i in iter1 for j in iter2)
        for i, j in genexpr:
            if i == 20 and j == 20:
                break

    method_lut = locals()  # can populate this some other way

    # Change params here to modify number of trials
    ti = timerit.Timerit(1000, bestof=10, verbose=1)

    # if True, record every trail run and show variance in seaborn
    # if False, use the standard timerit min/mean measures
    RECORD_ALL = True

    # These are the parameters that we benchmark over
    import numpy as np
    basis = {
        'method': ['method1_itertools', 'method2_except', 'method2_5_except_predef', 'method3_gendef', 'method4_genexp'],
        # 'n1': np.logspace(1, np.log2(100), 30, base=2).astype(int),
        # 'n2': np.logspace(1, np.log2(100), 30, base=2).astype(int),
        'size': np.logspace(1, np.log2(10000), 30, base=2).astype(int),
        'input_style': ['range', 'list', 'customized_iter'],
        # 'param_name': [param values],
    }
    xlabel = 'size'
    xinput_labels = ['n1', 'n2', 'size']

    # Set these to param labels that directly transfer to method kwargs
    kw_labels = []
    # Set these to empty lists if they are not used
    group_labels = {
        'style': ['input_style'],
        'size': [],
    }
    group_labels['hue'] = list(
        (ub.oset(basis) - {xlabel} - xinput_labels) - set.union(*map(set, group_labels.values())))
    grid_iter = list(ub.named_product(basis))

    def make_input(params):
        # Given the parameterization make the benchmark function input
        # n1 = params['n1']
        # n2 = params['n2']
        size = params['size']
        n1 = int(np.sqrt(size))
        n2 = int(np.sqrt(size))
        if params['input_style'] == 'list':
            iter1 = list(range(n1))
            iter2 = list(range(n1))
        elif params['input_style'] == 'range':
            iter1 = range(n1)
            iter2 = range(n2)
        elif params['input_style'] == 'customized_iter':
            import random
            def rando1():
                rng1 = random.Random(0)
                for _ in range(n1):
                    yield rng1.randint(0, n2)

            def rando2():
                rng2 = random.Random(1)
                for _ in range(n1):
                    yield rng2.randint(0, n2)

            iter1 = rando1()
            iter2 = rando2()
        else:
            raise KeyError
        return {'iter1': iter1, 'iter2': iter2}

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        # size = params['n1'] * params['n2']
        # params['size'] = size
        group_keys = {}
        for gname, labels in group_labels.items():
            group_keys[gname + '_key'] = ub.repr2(
                ub.dict_isect(params, labels), compact=1, si=1)
        key = ub.repr2(params, compact=1, si=1)
        # Make any modifications you need to compute input kwargs for each
        # method here.
        kwargs = ub.dict_isect(params.copy(),  kw_labels)

        method = method_lut[params['method']]
        # Timerit will run some user-specified number of loops.
        # and compute time stats with similar methodology to timeit
        for timer in ti.reset(key):
            # Put any setup logic you dont want to time here.
            # ...
            kwargs.update(make_input(params))
            with timer:
                # Put the logic you want to time here
                method(**kwargs)

        if RECORD_ALL:
            # Seaborn will show the variance if this is enabled, otherwise
            # use the robust timerit mean / min times
            # chunk_iter = ub.chunks(ti.times, ti.bestof)
            # times = list(map(min, chunk_iter))  # TODO: timerit method for this
            times = ti.robust_times()
            for time in times:
                row = {
                    # 'mean': ti.mean(),
                    'time': time,
                    'key': key,
                    **group_keys,
                    **params,
                }
                rows.append(row)
        else:
            row = {
                'mean': ti.mean(),
                'min': ti.min(),
                'key': key,
                **group_keys,
                **params,
            }
            rows.append(row)

    time_key = 'time' if RECORD_ALL else 'min'

    # The rows define a long-form pandas data array.
    # Data in long-form makes it very easy to use seaborn.
    data = pd.DataFrame(rows)
    data = data.sort_values(time_key)

    if RECORD_ALL:
        # Show the min / mean if we record all
        min_times = data.groupby('key').min().rename({'time': 'min'}, axis=1)
        mean_times = data.groupby('key')[['time']].mean().rename({'time': 'mean'}, axis=1)
        stats_data = pd.concat([min_times, mean_times], axis=1)
        stats_data = stats_data.sort_values('min')
    else:
        stats_data = data

    USE_OPENSKILL = 1
    if USE_OPENSKILL:
        # Lets try a real ranking method
        # https://github.com/OpenDebates/openskill.py
        import openskill
        method_ratings = {m: openskill.Rating() for m in basis['method']}

    other_keys = sorted(set(stats_data.columns) - {'key', 'method', 'min', 'mean', 'hue_key', 'size_key', 'style_key'})
    for params, variants in stats_data.groupby(other_keys):
        variants = variants.sort_values('mean')
        ranking = variants['method'].reset_index(drop=True)

        mean_speedup = variants['mean'].max() / variants['mean']
        stats_data.loc[mean_speedup.index, 'mean_speedup'] = mean_speedup
        min_speedup = variants['min'].max() / variants['min']
        stats_data.loc[min_speedup.index, 'min_speedup'] = min_speedup

        if USE_OPENSKILL:
            # The idea is that each setting of parameters is a game, and each
            # "method" is a player. We rank the players by which is fastest,
            # and update their ranking according to the Weng-Lin Bayes ranking
            # model. This does not take the fact that some "games" (i.e.
            # parameter settings) are more important than others, but it should
            # be fairly robust on average.
            old_ratings = [[r] for r in ub.take(method_ratings, ranking)]
            new_values = openskill.rate(old_ratings)  # Not inplace
            new_ratings = [openskill.Rating(*new[0]) for new in new_values]
            method_ratings.update(ub.dzip(ranking, new_ratings))

    print('Statistics:')
    print(stats_data)

    if USE_OPENSKILL:
        from openskill import predict_win
        win_prob = predict_win([[r] for r in method_ratings.values()])
        skill_agg = pd.Series(ub.dzip(method_ratings.keys(), win_prob)).sort_values(ascending=False)
        print('method_ratings = {}'.format(ub.repr2(method_ratings, nl=1)))
        print('Aggregated Rankings =\n{}'.format(skill_agg))

    plot = True
    if plot:
        # import seaborn as sns
        # kwplot autosns works well for IPython and script execution.
        # not sure about notebooks.
        import kwplot
        sns = kwplot.autosns()
        plt = kwplot.autoplt()

        plotkw = {}
        for gname, labels in group_labels.items():
            if labels:
                plotkw[gname] = gname + '_key'

        # Your variables may change
        ax = kwplot.figure(fnum=1, doclf=True).gca()
        sns.lineplot(data=data, x=xlabel, y=time_key, marker='o', ax=ax, **plotkw)
        ax.set_title(f'Benchmark Nested Breaks: #Trials {ti.num}, bestof {ti.bestof}')
        ax.set_xlabel(f'{xlabel}')
        ax.set_ylabel('Time')
        ax.set_xscale('log')
        ax.set_yscale('log')

        try:
            __IPYTHON__
        except NameError:
            plt.show()
Exemplo n.º 6
0
    data_kwkeys = ub.compatible(basis, generate_data)
    func_kwkeys = ub.compatible(basis, method_lut[basis['method'][0]])

    # These variable influence what is plotted on the x-asis y-axis and
    # with different line types
    xlabel = 'size'
    ylabel = 'time'
    group_labels = {
        'size': ['subsize'],
        'style': ['subsize'],
    }
    hue_labels = ub.oset(basis) - {xlabel}
    if group_labels:
        hue_labels = hue_labels - set.union(*map(set, group_labels.values()))
    group_labels['hue'] = list(hue_labels)
    grid_iter = list(ub.named_product(basis))

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        group_keys = {}
        for gname, labels in group_labels.items():
            group_keys[gname + '_key'] = ub.repr2(ub.dict_isect(
                params, labels),
                                                  compact=1,
                                                  si=1)
        key = ub.repr2(params, compact=1, si=1)

        data_kwargs = ub.dict_isect(params.copy(), data_kwkeys)
        func_kwargs = generate_data(**data_kwargs)
        method = method_lut[params['method']]
Exemplo n.º 7
0
def benchmark_reversed_range():
    import ubelt as ub
    import pandas as pd
    import timerit
    import itertools as it

    methods = []

    def custom_reversed_range_v1(start, stop):
        final = stop - 1
        for idx in range(stop - start):
            yield final - idx

    def custom_reversed_range_v2(start, stop):
        yield from it.islice(it.count(stop - 1, step=-1), stop - start)

    @methods.append
    def reversed_builtin(x):
        start = 10
        stop = x + start
        ret = list(reversed(range(start, stop)))
        return ret

    @methods.append
    def negative_range(x):
        start = 10
        stop = x + start
        ret = list(range(stop - 1, start - 1, -1))
        return ret

    # @methods.append
    # def custom_v1(x):
    #     start = 10
    #     stop = x + start
    #     ret = list(custom_reversed_range_v1(start, stop))
    #     return ret

    # @methods.append
    # def custom_v2(x):
    #     start = 10
    #     stop = x + start
    #     ret = list(custom_reversed_range_v2(start, stop))
    #     return ret

    method_lut = {f.__name__: f for f in methods}

    results = {k: func(10) for k, func in method_lut.items()}
    print('results = {}'.format(ub.repr2(results, nl=1, align=':')))
    if not ub.allsame(results.values()):
        raise AssertionError('Failed consistency check')

    ti = timerit.Timerit(1000, bestof=10, verbose=2)

    basis = {
        'method': list(method_lut.keys()),
        'x': [2 ** i for i in range(14)],
    }
    grid_iter = ub.named_product(basis)

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        key = ub.repr2(params, compact=1, si=1)
        kwargs = params.copy()
        method_key = kwargs.pop('method')
        method = method_lut[method_key]
        # Timerit will run some user-specified number of loops.
        # and compute time stats with similar methodology to timeit
        for timer in ti.reset(key):
            # Put any setup logic you dont want to time here.
            # ...
            with timer:
                # Put the logic you want to time here
                method(**kwargs)
        row = {
            'mean': ti.mean(),
            'min': ti.min(),
            'key': key,
            **params,
        }
        rows.append(row)

    # The rows define a long-form pandas data array.
    # Data in long-form makes it very easy to use seaborn.
    data = pd.DataFrame(rows)
    print(data)

    plot = True
    if plot:
        # import seaborn as sns
        # kwplot autosns works well for IPython and script execution.
        # not sure about notebooks.
        import kwplot
        sns = kwplot.autosns()

        # Your variables may change
        ax = kwplot.figure(fnum=1, doclf=True).gca()
        sns.lineplot(data=data, x='x', y='min', hue='method', marker='o', ax=ax)
        # ax.set_xscale('log')
        ax.set_title('Benchmark Reveral Methods ')
        ax.set_xlabel('A better x-variable description')
        ax.set_ylabel('A better y-variable description')
Exemplo n.º 8
0
def benchmark_unpack():
    """
    What is faster unpacking items with slice syntax or tuple-unpacking

    Slice unpacking seems to be a tad faster.
    """
    import ubelt as ub
    import random
    import pandas as pd
    import timerit
    import string

    def tuple_unpack(items):
        *prefix, key = items
        return prefix, key

    def slice_unpack(items):
        prefix, key = items[:-1], items[-1]
        return prefix, key

    method_lut = locals()  # can populate this some other way

    ti = timerit.Timerit(5000, bestof=3, verbose=2)

    basis = {
        'method': ['tuple_unpack', 'slice_unpack'],
        'size': list(range(1, 64 + 1)),
        'type': ['string', 'float'],
    }
    xlabel = 'size'
    kw_labels = []
    group_labels = {
        'style': ['type'],
        'size': [],
    }
    group_labels['hue'] = list((ub.oset(basis) - {xlabel}) -
                               set.union(*map(set, group_labels.values())))
    grid_iter = list(ub.named_product(basis))

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        group_keys = {}
        for gname, labels in group_labels.items():
            group_keys[gname + '_key'] = ub.repr2(ub.dict_isect(
                params, labels),
                                                  compact=1,
                                                  si=1)
        key = ub.repr2(params, compact=1, si=1)
        size = params['size']
        method = method_lut[params['method']]
        # Timerit will run some user-specified number of loops.
        # and compute time stats with similar methodology to timeit
        for timer in ti.reset(key):
            if type == 'string':
                items = [
                    ''.join(random.choices(string.printable, k=5))
                    for _ in range(size)
                ]
            elif type == 'float':
                items = [random.random() for _ in range(size)]
            with timer:
                method(items)
        for time in ti.times:
            row = {
                'time': time,
                'key': key,
                **group_keys,
                **params,
            }
            rows.append(row)

    # The rows define a long-form pandas data array.
    # Data in long-form makes it very easy to use seaborn.
    data = pd.DataFrame(rows)
    data = data.sort_values('time')
    summary_rows = []
    for method, group in data.groupby('method'):
        row = {}
        row['method'] = method
        row['mean'] = group['time'].mean()
        row['std'] = group['time'].std()
        row['min'] = group['time'].min()
        row['max'] = group['time'].max()
        summary_rows.append(row)
    print(pd.DataFrame(summary_rows).sort_values('mean'))

    plot = True
    if plot:
        # import seaborn as sns
        # kwplot autosns works well for IPython and script execution.
        # not sure about notebooks.
        import kwplot
        sns = kwplot.autosns()

        plotkw = {}
        for gname, labels in group_labels.items():
            if labels:
                plotkw[gname] = gname + '_key'

        # Your variables may change
        ax = kwplot.figure(fnum=1, doclf=True).gca()
        sns.lineplot(data=data,
                     x=xlabel,
                     y='time',
                     marker='o',
                     ax=ax,
                     **plotkw)
        ax.set_title('Benchmark')
        ax.set_xlabel('Execution time')
        ax.set_ylabel('Size of slices')
Exemplo n.º 9
0
def benchmark_pathlib_vs_fspath():
    import ubelt as ub
    import pathlib
    import pandas as pd
    import random
    import timerit
    import os

    def method_pathlib(inputs):
        p = pathlib.Path(*inputs)

    def method_ospath(inputs):
        p = os.path.join(*inputs)

    method_lut = locals()  # can populate this some other way

    ti = timerit.Timerit(10000, bestof=10, verbose=2)

    basis = {
        'method': ['method_pathlib', 'method_ospath'],
        'num_parts': [2, 4, 8, 12, 16],
    }
    xlabel = 'num_parts'
    kw_labels = []
    group_labels = {
        'style': [],
        'size': [],
    }
    group_labels['hue'] = list((ub.oset(basis) - {xlabel}) -
                               set.union(*map(set, group_labels.values())))
    grid_iter = list(ub.named_product(basis))

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        group_keys = {}
        for gname, labels in group_labels.items():
            group_keys[gname + '_key'] = ub.repr2(ub.dict_isect(
                params, labels),
                                                  compact=1,
                                                  si=1)
        key = ub.repr2(params, compact=1, si=1)
        kwargs = ub.dict_isect(params.copy(), kw_labels)

        n = params['num_parts']
        inputs = [chr(random.randint(97, 120)) for _ in range(n)]
        kwargs['inputs'] = inputs
        method = method_lut[params['method']]
        # Timerit will run some user-specified number of loops.
        # and compute time stats with similar methodology to timeit
        for timer in ti.reset(key):
            # Put any setup logic you dont want to time here.
            # ...
            with timer:
                # Put the logic you want to time here
                method(**kwargs)
        row = {
            'mean': ti.mean(),
            'min': ti.min(),
            'key': key,
            **group_keys,
            **params,
        }
        rows.append(row)

    # The rows define a long-form pandas data array.
    # Data in long-form makes it very easy to use seaborn.
    data = pd.DataFrame(rows)
    data = data.sort_values('min')
    print(data)

    plot = True
    if plot:
        # import seaborn as sns
        # kwplot autosns works well for IPython and script execution.
        # not sure about notebooks.
        import kwplot
        sns = kwplot.autosns()

        plotkw = {}
        for gname, labels in group_labels.items():
            if labels:
                plotkw[gname] = gname + '_key'

        # Your variables may change
        ax = kwplot.figure(fnum=1, doclf=True).gca()
        sns.lineplot(data=data, x=xlabel, y='min', marker='o', ax=ax, **plotkw)
        ax.set_title('Benchmark')
        ax.set_xlabel('Time')
        ax.set_ylabel('Number of parts')
Exemplo n.º 10
0
def benchmark_dict_diff_impl():
    import ubelt as ub
    import pandas as pd
    import timerit
    import random

    def method_diffkeys(*args):
        first_dict = args[0]
        keys = set(first_dict)
        keys.difference_update(*map(set, args[1:]))
        new0 = dict((k, first_dict[k]) for k in keys)
        return new0

    def method_diffkeys_list(*args):
        first_dict = args[0]
        remove_keys = set.union(*map(set, args[1:]))
        keep_keys = [k for k in first_dict.keys() if k not in remove_keys]
        new = dict((k, first_dict[k]) for k in keep_keys)
        return new

    def method_diffkeys_oset(*args):
        first_dict = args[0]
        keys = ub.oset(first_dict)
        keys.difference_update(*map(set, args[1:]))
        new0 = dict((k, first_dict[k]) for k in keys)
        return new0

    def method_ifkeys_setcomp(*args):
        first_dict = args[0]
        remove_keys = {k for ks in args[1:] for k in ks}
        new1 = dict((k, v) for k, v in first_dict.items() if k not in remove_keys)
        return new1

    def method_ifkeys_setunion(*args):
        first_dict = args[0]
        remove_keys = set.union(*map(set, args[1:]))
        new2 = dict((k, v) for k, v in first_dict.items() if k not in remove_keys)
        return new2

    def method_ifkeys_getitem(*args):
        first_dict = args[0]
        remove_keys = set.union(*map(set, args[1:]))
        new3 = dict((k, first_dict[k]) for k in first_dict.keys() if k not in remove_keys)
        return new3

    def method_ifkeys_dictcomp(*args):
        # Cannot use until 3.6 is dropped (it is faster)
        first_dict = args[0]
        remove_keys = set.union(*map(set, args[1:]))
        new4 = {k: v for k, v in first_dict.items() if k not in remove_keys}
        return new4

    def method_ifkeys_dictcomp_getitem(*args):
        # Cannot use until 3.6 is dropped (it is faster)
        first_dict = args[0]
        remove_keys = set.union(*map(set, args[1:]))
        new4 = {k: first_dict[k] for k in first_dict.keys() if k not in remove_keys}
        return new4

    method_lut = locals()  # can populate this some other way

    def make_data(num_items, num_other, remove_fraction, keytype):
        if keytype == 'str':
            keytype = str
        if keytype == 'int':
            keytype = int
        first_keys = [random.randint(0, 1000) for _ in range(num_items)]
        k = int(remove_fraction * len(first_keys))
        remove_sets = [list(ub.unique(random.choices(first_keys, k=k) + [random.randint(0, 1000) for _ in range(num_items)])) for _ in range(num_other)]
        first_dict = {keytype(k): k for k in first_keys}
        args = [first_dict] + [{keytype(k): k for k in ks} for ks in remove_sets]
        return args

    ti = timerit.Timerit(200, bestof=1, verbose=2)

    basis = {
        'method': [
            # Cant use because unordered
            # 'method_diffkeys',

            # Cant use because python 3.6
            'method_ifkeys_dictcomp',
            'method_ifkeys_dictcomp_getitem',

            'method_ifkeys_setunion',
            'method_ifkeys_getitem',
            'method_diffkeys_list',

            # Probably not good
            # 'method_ifkeys_setcomp',
            # 'method_diffkeys_oset',
        ],
        'num_items': [10, 100, 1000],
        'num_other': [1, 3, 5],
        # 'num_other': [1],
        'remove_fraction': [0, 0.2, 0.5, 0.7, 1.0],
        # 'remove_fraction': [0.2, 0.8],
        'keytype': ['str', 'int'],
        # 'keytype': ['str'],
        # 'param_name': [param values],
    }
    xlabel = 'num_items'
    kw_labels = ['num_items', 'num_other', 'remove_fraction', 'keytype']
    group_labels = {
        'style': ['num_other', 'keytype'],
        'size': ['remove_fraction'],
    }
    group_labels['hue'] = list(
        (ub.oset(basis) - {xlabel}) - set.union(*map(set, group_labels.values())))
    grid_iter = list(ub.named_product(basis))

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        group_keys = {}
        for gname, labels in group_labels.items():
            group_keys[gname + '_key'] = ub.repr2(
                ub.dict_isect(params, labels), compact=1, si=1)
        key = ub.repr2(params, compact=1, si=1)
        kwargs = ub.dict_isect(params.copy(),  kw_labels)
        args = make_data(**kwargs)
        method = method_lut[params['method']]
        # Timerit will run some user-specified number of loops.
        # and compute time stats with similar methodology to timeit
        for timer in ti.reset(key):
            # Put any setup logic you dont want to time here.
            # ...
            with timer:
                # Put the logic you want to time here
                method(*args)
        row = {
            'mean': ti.mean(),
            'min': ti.min(),
            'key': key,
            **group_keys,
            **params,
        }
        rows.append(row)

    # The rows define a long-form pandas data array.
    # Data in long-form makes it very easy to use seaborn.
    data = pd.DataFrame(rows)
    data = data.sort_values('min')
    print(data)

    # for each parameter setting, group all methods with that used those exact
    # comparable params. Then rank how good each method did.  That will be a
    # preference profile. We will give that preference profile a weight (e.g.
    # based on the fastest method in the bunch) and then aggregate them with
    # some voting method.

    USE_OPENSKILL = 1
    if USE_OPENSKILL:
        # Lets try a real ranking method
        # https://github.com/OpenDebates/openskill.py
        import openskill
        method_ratings = {m: openskill.Rating() for m in basis['method']}

    weighted_rankings = ub.ddict(lambda: ub.ddict(float))
    for params, variants in data.groupby(['num_other', 'keytype', 'remove_fraction', 'num_items']):
        variants = variants.sort_values('mean')
        ranking = variants['method'].reset_index(drop=True)

        if USE_OPENSKILL:
            # The idea is that each setting of parameters is a game, and each
            # "method" is a player. We rank the players by which is fastest,
            # and update their ranking according to the Weng-Lin Bayes ranking
            # model. This does not take the fact that some "games" (i.e.
            # parameter settings) are more important than others, but it should
            # be fairly robust on average.
            old_ratings = [[r] for r in ub.take(method_ratings, ranking)]
            new_values = openskill.rate(old_ratings)  # Not inplace
            new_ratings = [openskill.Rating(*new[0]) for new in new_values]
            method_ratings.update(ub.dzip(ranking, new_ratings))

        # Choose a ranking weight scheme
        weight = variants['mean'].min()
        # weight = 1
        for rank, method in enumerate(ranking):
            weighted_rankings[method][rank] += weight
            weighted_rankings[method]['total'] += weight

    # Probably a more robust voting method to do this
    weight_rank_rows = []
    for method_name, ranks in weighted_rankings.items():
        weights = ub.dict_diff(ranks, ['total'])
        p_rank = ub.map_vals(lambda w: w / ranks['total'], weights)

        for rank, w in p_rank.items():
            weight_rank_rows.append({'rank': rank, 'weight': w, 'name': method_name})
    weight_rank_df = pd.DataFrame(weight_rank_rows)
    piv = weight_rank_df.pivot(['name'], ['rank'], ['weight'])
    print(piv)

    if USE_OPENSKILL:
        from openskill import predict_win
        win_prob = predict_win([[r] for r in method_ratings.values()])
        skill_agg = pd.Series(ub.dzip(method_ratings.keys(), win_prob)).sort_values(ascending=False)
        print('skill_agg =\n{}'.format(skill_agg))

    aggregated = (piv * piv.columns.levels[1].values).sum(axis=1).sort_values()
    print('weight aggregated =\n{}'.format(aggregated))

    plot = True
    if plot:
        # import seaborn as sns
        # kwplot autosns works well for IPython and script execution.
        # not sure about notebooks.
        import kwplot
        sns = kwplot.autosns()

        plotkw = {}
        for gname, labels in group_labels.items():
            if labels:
                plotkw[gname] = gname + '_key'

        # Your variables may change
        ax = kwplot.figure(fnum=1, doclf=True).gca()
        sns.lineplot(data=data, x=xlabel, y='min', marker='o', ax=ax, **plotkw)
        ax.set_title('Benchmark')
        ax.set_xlabel('A better x-variable description')
        ax.set_ylabel('A better y-variable description')
Exemplo n.º 11
0
def benchmark_mul_vs_pow():
    import ubelt as ub
    import pandas as pd
    import timerit

    from functools import reduce
    import operator as op
    import itertools as it

    def method_pow_via_mul_raw(n):
        """ Construct a function that does multiplication of a value n times """
        return eval('lambda v: ' + ' * '.join(['v'] * n))

    def method_pow_via_mul_for(v, n):
        ret = v
        for _ in range(1, n):
            ret = ret * v
        return ret

    def method_pow_via_mul_reduce(v, n):
        """ Alternative way to multiply a value n times """
        return reduce(op.mul, it.repeat(v, n))

    def method_pow_via_pow(v, n):
        return v ** n

    method_lut = locals()  # can populate this some other way

    ti = timerit.Timerit(500000, bestof=1000, verbose=2)

    basis = {
        'method': ['method_pow_via_mul_raw', 'method_pow_via_pow'],
        'n': list(range(1, 20)),
        'v': ['random-int', 'random-float'],
        # 'param_name': [param values],
    }
    xlabel = 'n'
    kw_labels = ['v', 'n']
    group_labels = {
        'style': ['v'],
        'size': [],
    }
    group_labels['hue'] = list(
        (ub.oset(basis) - {xlabel}) - set.union(*map(set, group_labels.values())))
    grid_iter = list(ub.named_product(basis))

    # For each variation of your experiment, create a row.
    rows = []
    for params in grid_iter:
        group_keys = {}
        for gname, labels in group_labels.items():
            group_keys[gname + '_key'] = ub.repr2(
                ub.dict_isect(params, labels), compact=1, si=1)
        key = ub.repr2(params, compact=1, si=1)
        kwargs = ub.dict_isect(params.copy(),  kw_labels)
        method = method_lut[params['method']]
        # Timerit will run some user-specified number of loops.
        # and compute time stats with similar methodology to timeit

        if params['method'] == 'method_pow_via_mul_raw':
            method = method(kwargs.pop('n'))

        for timer in ti.reset(key):
            # Put any setup logic you dont want to time here.
            # ...
            import random
            if kwargs['v'] == 'random':
                kwargs['v'] = random.randint(1, 31000) if random.random() > 0.5 else random.random()
            elif kwargs['v'] == 'random-int':
                kwargs['v'] = random.randint(1, 31000)
            elif kwargs['v'] == 'random-float':
                kwargs['v'] = random.random()
            with timer:
                # Put the logic you want to time here
                method(**kwargs)
        for time in map(min, ub.chunks(ti.times, ti.bestof)):
            row = {
                # 'mean': ti.mean(),
                'time': time,
                'key': key,
                **group_keys,
                **params,
            }
            rows.append(row)

    # The rows define a long-form pandas data array.
    # Data in long-form makes it very easy to use seaborn.
    data = pd.DataFrame(rows)
    # data = data.sort_values('time')
    print(data)

    plot = True
    if plot:
        # import seaborn as sns
        # kwplot autosns works well for IPython and script execution.
        # not sure about notebooks.
        import kwplot
        sns = kwplot.autosns()
        plt = kwplot.autoplt()

        plotkw = {}
        for gname, labels in group_labels.items():
            if labels:
                plotkw[gname] = gname + '_key'

        # Your variables may change
        ax = kwplot.figure(fnum=1, doclf=True).gca()
        sns.lineplot(data=data, x=xlabel, y='time', marker='o', ax=ax, **plotkw)
        ax.set_title('Benchmark')
        ax.set_xlabel('N')
        ax.set_ylabel('Time')
        ax.set_yscale('log')

        plt.show()