def dot_product_attention(q, k, v, bias, dropout_rate=0.0): """Dot-product attention. Args: q: Tensor with shape [..., length_q, depth_k]. k: Tensor with shape [..., length_kv, depth_k]. Leading dimensions must match with q. v: Tensor with shape [..., length_kv, depth_v] Leading dimensions must match with q. bias: bias Tensor (see attention_bias()) dropout_rate: a float. Returns: Tensor with shape [..., length_q, depth_v]. """ logits = tf.matmul(q, k, transpose_b=True) # [..., length_q, length_kv] logits = tf.multiply(logits, 1.0 / math.sqrt(float(util.get_shape_list(q)[-1]))) if bias is not None: # `attention_mask` = [B, T] from_shape = util.get_shape_list(q) if len(from_shape) == 4: broadcast_ones = tf.ones([from_shape[0], 1, from_shape[2], 1], tf.float32) elif len(from_shape) == 5: # from_shape = [B, N, Block_num, block_size, depth]# broadcast_ones = tf.ones( [from_shape[0], 1, from_shape[2], from_shape[3], 1], tf.float32) bias = tf.matmul(broadcast_ones, tf.cast(bias, tf.float32), transpose_b=True) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. adder = (1.0 - bias) * -10000.0 # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. logits += adder else: adder = 0.0 attention_probs = tf.nn.softmax(logits, name="attention_probs") attention_probs = util.dropout(attention_probs, dropout_rate) return tf.matmul(attention_probs, v)
def __init__(self, vocab_size, is_training, input_ids, input_mask, segment_ids, sample_weight=None, reduced_size=64, topic_size=1024, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, bias=0, scope='vae', trainable=True, **kwargs): super().__init__() # freeze parameters config = Config(vocab_size, hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads) if not is_training: config.hidden_dropout_prob = 0.0 config.attention_probs_dropout_prob = 0.0 input_shape = util.get_shape_list(input_ids, expected_rank=2) batch_size = input_shape[0] seq_length = input_shape[1] # Tilda embeddings for SMART algorithm tilda_embeddings = None use_tilda_embedding = kwargs.get('use_tilda_embedding') if use_tilda_embedding: with tf.variable_scope('', reuse=True): tilda_embeddings = tf.get_variable('tilda_embeddings') with tf.variable_scope(scope): with tf.variable_scope('embeddings'): (self.embedding_output, self.embedding_table) = \ self.embedding_lookup( input_ids=input_ids, vocab_size=config.vocab_size, batch_size=batch_size, max_seq_length=seq_length, embedding_size=config.hidden_size, initializer_range=config.initializer_range, word_embedding_name='word_embeddings', tilda_embeddings=tilda_embeddings, trainable=trainable) self.embedding_output = self.embedding_postprocessor( input_tensor=self.embedding_output, batch_size=batch_size, max_seq_length=seq_length, hidden_size=config.hidden_size, use_token_type=True, segment_ids=segment_ids, token_type_vocab_size=config.type_vocab_size, token_type_embedding_name='token_type_embeddings', use_position_embeddings=True, position_embedding_name='position_embeddings', initializer_range=config.initializer_range, max_position_embeddings=config.max_position_embeddings, dropout_prob=config.hidden_dropout_prob, trainable=trainable) with tf.variable_scope('encoder'): # stacked transformer attention_mask = self.create_attention_mask_from_input_mask( input_mask, batch_size, seq_length) self.all_encoder_layers = self.transformer_model( input_tensor=self.embedding_output, batch_size=batch_size, max_seq_length=seq_length, attention_mask=attention_mask, hidden_size=config.hidden_size, num_hidden_layers=config.num_hidden_layers, num_attention_heads=config.num_attention_heads, intermediate_size=config.intermediate_size, intermediate_act_fn=util.get_activation(config.hidden_act), hidden_dropout_prob=config.hidden_dropout_prob, attention_probs_dropout_prob=\ config.attention_probs_dropout_prob, initializer_range=config.initializer_range, trainable=trainable) # projection with tf.variable_scope('projection'): transformer_output = tf.layers.dense( self.all_encoder_layers[-1], reduced_size, activation=util.gelu, kernel_initializer=tf.truncated_normal_initializer( stddev=config.initializer_range), trainable=trainable) transformer_output = tf.reshape(transformer_output, [batch_size, -1]) input_length = tf.reduce_sum(input_mask, axis=-1) input_length = tf.cast(input_length, tf.float32) input_length_1d = tf.reshape(input_length, [batch_size]) input_length_2d = tf.reshape(input_length, [batch_size, 1]) broadcast_mask = tf.sequence_mask( tf.multiply(input_length_1d, reduced_size), seq_length * reduced_size, dtype=tf.float32) broadcast_mask = tf.multiply(broadcast_mask, seq_length / input_length_2d) transformer_output *= broadcast_mask # latent space miu = tf.layers.dense( transformer_output, topic_size, activation='tanh', kernel_initializer=tf.truncated_normal_initializer( stddev=config.initializer_range), name='miu', trainable=trainable) sigma = tf.layers.dense( transformer_output, topic_size, kernel_initializer=tf.truncated_normal_initializer( stddev=config.initializer_range), name='sigma', trainable=trainable) self.probs['miu'] = miu self.probs['sigma'] = sigma with tf.variable_scope('decoder'): with tf.variable_scope('projection'): # reparametarization if is_training: noise = tf.random_normal([batch_size, topic_size]) else: noise = tf.random_uniform([batch_size, topic_size], minval=-bias, maxval=bias) decoder_input = miu + tf.exp(sigma) * noise # projection decoder_input = tf.layers.dense( decoder_input, seq_length * reduced_size, activation=util.gelu, kernel_initializer=tf.truncated_normal_initializer( stddev=config.initializer_range), trainable=trainable) intermediate_input = tf.reshape( decoder_input, [-1, seq_length, reduced_size]) intermediate_input = util.layer_norm(intermediate_input, trainable=trainable) intermediate_input = util.dropout( intermediate_input, config.hidden_dropout_prob) # MLP with tf.variable_scope('intermediate'): intermediate_output = tf.layers.dense( intermediate_input, 4 * reduced_size, activation=util.gelu, kernel_initializer=util.create_initializer( config.initializer_range), trainable=trainable) with tf.variable_scope('output'): decoder_output = tf.layers.dense( intermediate_output, config.hidden_size, kernel_initializer=util.create_initializer( config.initializer_range), trainable=trainable) decoder_output = util.layer_norm(decoder_output, trainable=trainable) decoder_output = util.dropout(decoder_output, config.hidden_dropout_prob) self.all_decoder_layers = [intermediate_output, decoder_output] self.all_decoder_layers = [decoder_output] # reconstruction with tf.variable_scope('cls/predictions'): with tf.variable_scope('transform'): input_tensor = tf.layers.dense( decoder_output, units=config.hidden_size, activation=util.get_activation(config.hidden_act), kernel_initializer=util.create_initializer( config.initializer_range), trainable=trainable) input_tensor = util.layer_norm(input_tensor, trainable=trainable) output_weights = self.embedding_table output_bias = tf.get_variable('output_bias', shape=[config.vocab_size], initializer=tf.zeros_initializer(), trainable=trainable) flatten_input_tensor = tf.reshape(input_tensor, [-1, config.hidden_size]) logits = tf.matmul(flatten_input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) logits = tf.reshape(logits, [batch_size, seq_length, config.vocab_size]) probs = tf.nn.softmax(logits, axis=-1, name='probs') lm_log_probs = tf.nn.log_softmax(logits, axis=-1) self.preds['preds'] = tf.argmax(probs, axis=-1) one_hot_labels = tf.one_hot(input_ids, depth=config.vocab_size, dtype=tf.float32) per_example_loss = -tf.reduce_sum(lm_log_probs * one_hot_labels, axis=[-1]) if sample_weight is not None: per_example_loss *= tf.expand_dims(sample_weight, axis=-1) self.total_loss = (tf.reduce_mean(per_example_loss) + tf.reduce_mean(tf.square(miu)) + tf.reduce_mean(tf.exp(sigma) - sigma - 1)) self.losses['losses'] = per_example_loss
def attention_layer(self, from_tensor, to_tensor, attention_mask=None, num_attention_heads=12, size_per_head=512, query_act=None, key_act=None, value_act=None, attention_probs_dropout_prob=0.0, initializer_range=0.02, do_return_2d_tensor=False, batch_size=None, from_max_seq_length=None, to_max_seq_length=None, dtype=tf.float32, trainable=True): def transpose_for_scores(input_tensor, batch_size, num_attention_heads, max_seq_length, width): output_tensor = tf.reshape( input_tensor, [batch_size, max_seq_length, num_attention_heads, width]) output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3]) return output_tensor # Scalar dimensions referenced here: # B = batch size (number of sequences) # F = from_tensor sequence length # T = to_tensor sequence length # N = num_attention_heads # H = size_per_head from_tensor_2d = util.reshape_to_matrix(from_tensor) to_tensor_2d = util.reshape_to_matrix(to_tensor) # query_layer = [B*F, N*H] query_layer = tf.layers.dense( from_tensor_2d, num_attention_heads * size_per_head, activation=query_act, name='query', kernel_initializer=util.create_initializer(initializer_range), trainable=trainable) # key_layer = [B*T, N*H] key_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=key_act, name='key', kernel_initializer=util.create_initializer(initializer_range), trainable=trainable) # value_layer = [B*T, N*H] value_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=value_act, name='value', kernel_initializer=util.create_initializer(initializer_range), trainable=trainable) # query_layer = [B, N, F, H] query_layer = transpose_for_scores(query_layer, batch_size, num_attention_heads, from_max_seq_length, size_per_head) # key_layer = [B, N, T, H] key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads, to_max_seq_length, size_per_head) # Take the dot product between 'query' and 'key' to get the raw # attention scores. # attention_scores = [B, N, F, T] attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = tf.multiply(attention_scores, 1.0 / math.sqrt(float(size_per_head))) if attention_mask is not None: # attention_mask = [B, 1, F, T] attention_mask = tf.expand_dims(attention_mask, axis=[1]) adder = (1.0 - tf.cast(attention_mask, dtype)) * -10000.0 attention_scores += adder # Normalize the attention scores to probabilities. # attention_probs = [B, N, F, T] attention_probs = tf.nn.softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, # which might seem a bit unusual, but is taken from the original # Transformer paper. attention_probs = util.dropout(attention_probs, attention_probs_dropout_prob) # value_layer = [B, T, N, H] value_layer = tf.reshape(value_layer, [ batch_size, to_max_seq_length, num_attention_heads, size_per_head ]) # value_layer = [B, N, T, H] value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) # context_layer = [B, N, F, H] context_layer = tf.matmul(attention_probs, value_layer) # context_layer = [B, F, N, H] context_layer = tf.transpose(context_layer, [0, 2, 1, 3]) if do_return_2d_tensor: # context_layer = [B*F, N*H] context_layer = tf.reshape(context_layer, [ batch_size * from_max_seq_length, num_attention_heads * size_per_head ]) else: # context_layer = [B, F, N*H] context_layer = tf.reshape(context_layer, [ batch_size, from_max_seq_length, num_attention_heads * size_per_head ]) return (context_layer, attention_scores)
def __init__(self, is_training, input_tensor, n_wide_features, wide_features, label_ids, label_size=2, sample_weight=None, scope='cls/seq_relationship', hidden_dropout_prob=0.1, initializer_range=0.02, trainable=True, **kwargs): super().__init__(**kwargs) hidden_size = input_tensor.shape.as_list()[-1] feature_size = wide_features.shape.as_list()[-1] with tf.variable_scope('wide'): feature_embeddings = tf.get_variable( name='feature_embeddings', shape=[feature_size + 1, hidden_size], initializer=util.create_initializer(initializer_range), trainable=trainable) wide_output = tf.gather(feature_embeddings, wide_features) # [B, N, H] with tf.variable_scope('wide_and_deep'): deep_output = tf.expand_dims(input_tensor, -1) # [B, H, 1] attention_scores = tf.matmul(wide_output, deep_output) # [B, N, 1] attention_scores = tf.transpose(attention_scores, [0, 2, 1]) # [B, 1, N] attention_scores = tf.multiply(attention_scores, 1.0 / math.sqrt(hidden_size)) feature_mask = tf.cast( tf.sequence_mask(n_wide_features, feature_size), tf.float32) # [B, N] feature_mask = tf.expand_dims(feature_mask, 1) # [B, 1, N] attention_scores += (1.0 - feature_mask) * -10000.0 attention_matrix = tf.nn.softmax(attention_scores, axis=-1) attention_output = tf.matmul(attention_matrix, wide_output) # [B, 1, H] attention_output = attention_output[:, 0, :] # [B, H] # attention_output = util.dropout( # attention_output, hidden_dropout_prob) input_tensor = util.layer_norm(attention_output + input_tensor, trainable=trainable) with tf.variable_scope(scope): output_weights = tf.get_variable( 'output_weights', shape=[label_size, hidden_size], initializer=util.create_initializer(initializer_range), trainable=trainable) output_bias = tf.get_variable('output_bias', shape=[label_size], initializer=tf.zeros_initializer(), trainable=trainable) output_layer = util.dropout( input_tensor, hidden_dropout_prob if is_training else 0.0) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) self.preds['preds'] = tf.argmax(logits, axis=-1) self.probs['probs'] = tf.nn.softmax(logits, axis=-1, name='probs') log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(label_ids, depth=label_size, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) if sample_weight is not None: per_example_loss = tf.cast(sample_weight, dtype=tf.float32) * per_example_loss thresh = kwargs.get('tsa_thresh') if thresh is not None: assert isinstance( thresh, float), ('`tsa_thresh` must be a float between 0 and 1.') uncertainty = tf.reduce_sum(self.probs['probs'] * tf.log(self.probs['probs']), axis=-1) uncertainty /= tf.log(1 / label_size) per_example_loss = tf.cast( tf.greater(uncertainty, thresh), dtype=tf.float32) * \ per_example_loss self.losses['losses'] = per_example_loss self.total_loss = tf.reduce_mean(per_example_loss)
def attention_layer(from_tensor, to_tensor, attention_mask=None, num_attention_heads=1, size_per_head=512, query_act=None, key_act=None, value_act=None, attention_probs_dropout_prob=0.0, initializer_range=0.02, do_return_2d_tensor=False, batch_size=None, from_seq_length=None, to_seq_length=None): '''Performs multi-headed attention from `from_tensor` to `to_tensor`. This is an implementation of multi-headed attention based on 'Attention is all you Need'. If `from_tensor` and `to_tensor` are the same, then this is self-attention. Each timestep in `from_tensor` attends to the corresponding sequence in `to_tensor`, and returns a fixed-with vector. This function first projects `from_tensor` into a 'query' tensor and `to_tensor` into 'key' and 'value' tensors. These are (effectively) a list of tensors of length `num_attention_heads`, where each tensor is of shape [batch_size, seq_length, size_per_head]. Then, the query and key tensors are dot-producted and scaled. These are softmaxed to obtain attention probabilities. The value tensors are then interpolated by these probabilities, then concatenated back to a single tensor and returned. In practice, the multi-headed attention are done with transposes and reshapes rather than actual separate tensors. Args: from_tensor: float Tensor of shape [batch_size, from_seq_length, from_width]. to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width]. attention_mask: (optional) int32 Tensor of shape [batch_size, from_seq_length, to_seq_length]. The values should be 1 or 0. The attention scores will effectively be set to -infinity for any positions in the mask that are 0, and will be unchanged for positions that are 1. num_attention_heads: int. Number of attention heads. size_per_head: int. Size of each attention head. query_act: (optional) Activation function for the query transform. key_act: (optional) Activation function for the key transform. value_act: (optional) Activation function for the value transform. attention_probs_dropout_prob: (optional) float. Dropout probability of the attention probabilities. initializer_range: float. Range of the weight initializer. do_return_2d_tensor: bool. If True, the output will be of shape [batch_size * from_seq_length, num_attention_heads * size_per_head]. If False, the output will be of shape [batch_size, from_seq_length, num_attention_heads * size_per_head]. batch_size: (Optional) int. If the input is 2D, this might be the batch size of the 3D version of the `from_tensor` and `to_tensor`. from_seq_length: (Optional) If the input is 2D, this might be the seq length of the 3D version of the `from_tensor`. to_seq_length: (Optional) If the input is 2D, this might be the seq length of the 3D version of the `to_tensor`. Returns: float Tensor of shape [batch_size, from_seq_length, num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is true, this will be of shape [batch_size * from_seq_length, num_attention_heads * size_per_head]). Raises: ValueError: Any of the arguments or tensor shapes are invalid. ''' def transpose_for_scores(input_tensor, batch_size, num_attention_heads, seq_length, width): output_tensor = tf.reshape( input_tensor, [batch_size, seq_length, num_attention_heads, width]) output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3]) return output_tensor from_shape = util.get_shape_list(from_tensor, expected_rank=[2, 3]) to_shape = util.get_shape_list(to_tensor, expected_rank=[2, 3]) if len(from_shape) != len(to_shape): raise ValueError( 'The rank of `from_tensor` must match the rank of `to_tensor`.') if len(from_shape) == 3: batch_size = from_shape[0] from_seq_length = from_shape[1] to_seq_length = to_shape[1] elif len(from_shape) == 2: if batch_size is None or from_seq_length is None or to_seq_length is None: raise ValueError( 'When passing in rank 2 tensors to attention_layer, the values ' 'for `batch_size`, `from_seq_length`, and `to_seq_length` ' 'must all be specified.') # Scalar dimensions referenced here: # B = batch size (number of sequences) # F = `from_tensor` sequence length # T = `to_tensor` sequence length # N = `num_attention_heads` # H = `size_per_head` from_tensor_2d = util.reshape_to_matrix(from_tensor) to_tensor_2d = util.reshape_to_matrix(to_tensor) # `query_layer` = [B*F, N*H] query_layer = tf.layers.dense( from_tensor_2d, num_attention_heads * size_per_head, activation=query_act, name='query', kernel_initializer=util.create_initializer(initializer_range)) # `key_layer` = [B*T, N*H] key_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=key_act, name='key', kernel_initializer=util.create_initializer(initializer_range)) # `value_layer` = [B*T, N*H] value_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=value_act, name='value', kernel_initializer=util.create_initializer(initializer_range)) # `query_layer` = [B, N, F, H] query_layer = transpose_for_scores(query_layer, batch_size, num_attention_heads, from_seq_length, size_per_head) # `key_layer` = [B, N, T, H] key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads, to_seq_length, size_per_head) # Take the dot product between 'query' and 'key' to get the raw # attention scores. # `attention_scores` = [B, N, F, T] attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = tf.multiply(attention_scores, 1.0 / math.sqrt(float(size_per_head))) if attention_mask is not None: # `attention_mask` = [B, 1, F, T] attention_mask = tf.expand_dims(attention_mask, axis=[1]) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0 # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_scores += adder # Normalize the attention scores to probabilities. # `attention_probs` = [B, N, F, T] attention_probs = tf.nn.softmax(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = util.dropout(attention_probs, attention_probs_dropout_prob) # `value_layer` = [B, T, N, H] value_layer = tf.reshape( value_layer, [batch_size, to_seq_length, num_attention_heads, size_per_head]) # `value_layer` = [B, N, T, H] value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) # `context_layer` = [B, N, F, H] context_layer = tf.matmul(attention_probs, value_layer) # `context_layer` = [B, F, N, H] context_layer = tf.transpose(context_layer, [0, 2, 1, 3]) if do_return_2d_tensor: # `context_layer` = [B*F, N*H] context_layer = tf.reshape(context_layer, [ batch_size * from_seq_length, num_attention_heads * size_per_head ]) else: # `context_layer` = [B, F, N*H] context_layer = tf.reshape( context_layer, [batch_size, from_seq_length, num_attention_heads * size_per_head]) return context_layer, attention_probs