Exemplo n.º 1
0
def test_additivity(mode):
    mesh = dolfinx.UnitSquareMesh(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = dolfinx.FunctionSpace(mesh, ("CG", 1))

    f1 = dolfinx.Function(V)
    f2 = dolfinx.Function(V)
    f3 = dolfinx.Function(V)
    with f1.vector.localForm() as f1_local:
        f1_local.set(1.0)
    with f2.vector.localForm() as f2_local:
        f2_local.set(2.0)
    with f3.vector.localForm() as f3_local:
        f3_local.set(3.0)
    j1 = ufl.inner(f1, f1) * ufl.dx(mesh)
    j2 = ufl.inner(f2, f2) * ufl.ds(mesh)
    j3 = ufl.inner(ufl.avg(f3), ufl.avg(f3)) * ufl.dS(mesh)

    # Assemble each scalar form separately
    J1 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j1), op=MPI.SUM)
    J2 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j2), op=MPI.SUM)
    J3 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j3), op=MPI.SUM)

    # Sum forms and assemble the result
    J12 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j1 + j2), op=MPI.SUM)
    J13 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j1 + j3), op=MPI.SUM)
    J23 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j2 + j3), op=MPI.SUM)
    J123 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j1 + j2 + j3), op=MPI.SUM)

    # Compare assembled values
    assert (J1 + J2) == pytest.approx(J12)
    assert (J1 + J3) == pytest.approx(J13)
    assert (J2 + J3) == pytest.approx(J23)
    assert (J1 + J2 + J3) == pytest.approx(J123)
def test_basic_interior_facet_assembly():

    ghost_mode = dolfin.cpp.mesh.GhostMode.none
    if (dolfin.MPI.size(dolfin.MPI.comm_world) > 1):
        ghost_mode = dolfin.cpp.mesh.GhostMode.shared_facet

    mesh = dolfin.RectangleMesh(
        dolfin.MPI.comm_world,
        [numpy.array([0.0, 0.0, 0.0]),
         numpy.array([1.0, 1.0, 0.0])], [5, 5],
        cell_type=dolfin.cpp.mesh.CellType.Type.triangle,
        ghost_mode=ghost_mode)

    V = dolfin.function.FunctionSpace(mesh, ("DG", 1))
    u, v = dolfin.TrialFunction(V), dolfin.TestFunction(V)

    a = ufl.inner(ufl.avg(u), ufl.avg(v)) * ufl.dS

    A = dolfin.fem.assemble_matrix(a)
    A.assemble()
    assert isinstance(A, PETSc.Mat)

    L = ufl.conj(ufl.avg(v)) * ufl.dS

    b = dolfin.fem.assemble_vector(L)
    b.assemble()
    assert isinstance(b, PETSc.Vec)
Exemplo n.º 3
0
def test_additivity(mode):
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))

    f1 = Function(V)
    f2 = Function(V)
    f3 = Function(V)
    f1.x.array[:] = 1.0
    f2.x.array[:] = 2.0
    f3.x.array[:] = 3.0
    j1 = ufl.inner(f1, f1) * ufl.dx(mesh)
    j2 = ufl.inner(f2, f2) * ufl.ds(mesh)
    j3 = ufl.inner(ufl.avg(f3), ufl.avg(f3)) * ufl.dS(mesh)

    # Assemble each scalar form separately
    J1 = mesh.comm.allreduce(assemble_scalar(form(j1)), op=MPI.SUM)
    J2 = mesh.comm.allreduce(assemble_scalar(form(j2)), op=MPI.SUM)
    J3 = mesh.comm.allreduce(assemble_scalar(form(j3)), op=MPI.SUM)

    # Sum forms and assemble the result
    J12 = mesh.comm.allreduce(assemble_scalar(form(j1 + j2)), op=MPI.SUM)
    J13 = mesh.comm.allreduce(assemble_scalar(form(j1 + j3)), op=MPI.SUM)
    J23 = mesh.comm.allreduce(assemble_scalar(form(j2 + j3)), op=MPI.SUM)
    J123 = mesh.comm.allreduce(assemble_scalar(form(j1 + j2 + j3)), op=MPI.SUM)

    # Compare assembled values
    assert (J1 + J2) == pytest.approx(J12)
    assert (J1 + J3) == pytest.approx(J13)
    assert (J2 + J3) == pytest.approx(J23)
    assert (J1 + J2 + J3) == pytest.approx(J123)
Exemplo n.º 4
0
def test_basic_interior_facet_assembly():
    mesh = create_rectangle(MPI.COMM_WORLD, [np.array([0.0, 0.0]), np.array([1.0, 1.0])],
                            [5, 5], cell_type=CellType.triangle,
                            ghost_mode=GhostMode.shared_facet)
    V = FunctionSpace(mesh, ("DG", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = ufl.inner(ufl.avg(u), ufl.avg(v)) * ufl.dS
    a = form(a)
    A = assemble_matrix(a)
    A.assemble()
    assert isinstance(A, PETSc.Mat)

    L = ufl.conj(ufl.avg(v)) * ufl.dS
    L = form(L)
    b = assemble_vector(L)
    b.assemble()
    assert isinstance(b, PETSc.Vec)
def test_ghost_mesh_dS_assembly(mode, dS):
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    dS = dS(mesh)
    a = form(inner(avg(u), avg(v)) * dS)

    # Initial assembly
    A = fem.assemble_matrix(a)
    A.assemble()
    assert isinstance(A, PETSc.Mat)

    # Check that the norms are the same for all three modes
    normA = A.norm()
    print(normA)

    assert normA == pytest.approx(2.1834054713561906, rel=1.e-6, abs=1.e-12)
Exemplo n.º 6
0
def test_coefficents_non_constant():
    "Test packing coefficients with non-constant values"
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 5)
    V = FunctionSpace(
        mesh, ("Lagrange", 3))  # degree 3 so that interpolation is exact

    u = Function(V)
    u.interpolate(lambda x: x[0] * x[1]**2)
    x = SpatialCoordinate(mesh)

    v = ufl.TestFunction(V)

    # -- Volume integral vector
    F = form((ufl.inner(u, v) - ufl.inner(x[0] * x[1]**2, v)) * dx)
    b0 = assemble_vector(F)
    b0.assemble()
    assert np.linalg.norm(b0.array) == pytest.approx(0.0)

    # -- Exterior facet integral vector
    F = form((ufl.inner(u, v) - ufl.inner(x[0] * x[1]**2, v)) * ds)
    b0 = assemble_vector(F)
    b0.assemble()
    assert np.linalg.norm(b0.array) == pytest.approx(0.0)

    # -- Interior facet integral vector
    V = FunctionSpace(mesh,
                      ("DG", 3))  # degree 3 so that interpolation is exact

    u0 = Function(V)
    u0.interpolate(lambda x: x[1]**2)
    u1 = Function(V)
    u1.interpolate(lambda x: x[0])
    x = SpatialCoordinate(mesh)

    v = ufl.TestFunction(V)

    F = (ufl.inner(u1('+') * u0('-'), ufl.avg(v)) -
         ufl.inner(x[0] * x[1]**2, ufl.avg(v))) * ufl.dS
    F = form(F)
    b0 = assemble_vector(F)
    b0.assemble()
    assert np.linalg.norm(b0.array) == pytest.approx(0.0)
Exemplo n.º 7
0
def test_basic_interior_facet_assembly():
    mesh = dolfinx.RectangleMesh(
        MPI.COMM_WORLD,
        [numpy.array([0.0, 0.0, 0.0]),
         numpy.array([1.0, 1.0, 0.0])], [5, 5],
        cell_type=dolfinx.cpp.mesh.CellType.triangle,
        ghost_mode=dolfinx.cpp.mesh.GhostMode.shared_facet)

    V = fem.FunctionSpace(mesh, ("DG", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    a = ufl.inner(ufl.avg(u), ufl.avg(v)) * ufl.dS

    A = dolfinx.fem.assemble_matrix(a)
    A.assemble()
    assert isinstance(A, PETSc.Mat)

    L = ufl.conj(ufl.avg(v)) * ufl.dS
    b = dolfinx.fem.assemble_vector(L)
    b.assemble()
    assert isinstance(b, PETSc.Vec)
Exemplo n.º 8
0
    def error_indicators(self):
        """
        Generate and return linear form defining error indicators
        """
        # Extract these to increase readability
        R_T = self._R_T
        R_dT = self._R_dT
        z = self._Ez_h
        z_h = self._z_h

        # Define linear form for computing error indicators
        v = self.module.TestFunction(self._DG0)
        eta_T = (v * inner(R_T, z - z_h) * dx(self.domain) +
                 avg(v)*(inner(R_dT('+'), (z - z_h)('+')) +
                         inner(R_dT('-'), (z - z_h)('-'))) * dS(self.domain) +
                 v * inner(R_dT, z - z_h) * ds(self.domain))

        return eta_T
Exemplo n.º 9
0
 def qoi_varf(u,m):
     return ufl.avg(ufl.exp(m)*ufl.dot( ufl.grad(u), n) )*dss(1)
Exemplo n.º 10
0
# array of displacement values to apply at right boundary
stretchVals = np.hstack((
    ldot * timeVals[:len(timeVals) // 2],
    ldot * (-timeVals[len(timeVals) // 2:] + 2 * timeVals[len(timeVals) // 2]),
))

svals = np.zeros_like(stretchVals)

plt.plot(timeVals, stretchVals)
plt.savefig("stretchesVisco.png")
plt.close()

# stabilization parameters
h = FacetArea(mesh)
h_avg = avg(h)

# new variable name to take derivatives
FF = Identity(3) + grad(u)
CC = FF.T * FF
Fv = variable(FF)
S = diff(freeEnergy(Fv.T * Fv, CCv), Fv)  # first PK stress
dl_interp(CC, C)
dl_interp(CC, Cn)

my_identity = grad(SpatialCoordinate(mesh))

dl_interp(my_identity, CCv)
dl_interp(my_identity, Cvn)
dl_interp(my_identity, C_quart)
dl_interp(my_identity, C_thr_quart)
Exemplo n.º 11
0
# <markdowncell>
# Error estimator
# <codecell>

fvspace = dune.fem.space.finiteVolume(uh.space.grid)
estimate = fvspace.interpolate([0], name="estimate")

chi = ufl.TestFunction(fvspace)
hT = ufl.MaxCellEdgeLength(fvspace.cell())
he = ufl.MaxFacetEdgeLength(fvspace.cell())('+')
n = ufl.FacetNormal(fvspace.cell())

residual = (u - uh_n) / dt - div(diffusiveFlux) + source(u, u, u, vh)

estimator_ufl = hT**2 * residual**2 * chi * dx +\
                he * inner( jump(diffusiveFlux), n('+'))**2 * avg(chi) * dS
estimator = dune.fem.operator.galerkin(estimator_ufl)

# <markdowncell>
# Time loop
# <codecell>

nextSaveTime = saveInterval
count = 0
levelFunction = dune.fem.function.levelFunction(gridView)
gridView.writeVTK("spiral",
                  pointdata=[uh, vh],
                  number=count,
                  celldata=[estimate, levelFunction])
count += 1
Exemplo n.º 12
0
# The bilinear form a(v, u) and linear form L(v) for
# Poisson's equation in a discontinuous Galerkin (DG)
# formulation.
from ufl import (Coefficient, Constant, FacetNormal, FiniteElement,
                 TestFunction, TrialFunction, avg, dot, dS, ds, dx, grad,
                 inner, jump, triangle)

element = FiniteElement("Discontinuous Lagrange", triangle, 1)

v = TestFunction(element)
u = TrialFunction(element)
f = Coefficient(element)

n = FacetNormal(triangle)
h = Constant(triangle)

gN = Coefficient(element)

alpha = 4.0
gamma = 8.0

a = inner(grad(v), grad(u)) * dx \
    - inner(avg(grad(v)), jump(u, n)) * dS \
    - inner(jump(v, n), avg(grad(u))) * dS \
    + alpha / h('+') * dot(jump(v, n), jump(u, n)) * dS \
    - inner(grad(v), u * n) * ds \
    - inner(v * n, grad(u)) * ds \
    + gamma / h * v * u * ds

L = v * f * dx + v * gN * ds
Exemplo n.º 13
0
def test_manufactured_poisson_dg(degree, filename, datadir):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.

    """
    with XDMFFile(MPI.COMM_WORLD,
                  os.path.join(datadir, filename),
                  "r",
                  encoding=XDMFFile.Encoding.ASCII) as xdmf:
        mesh = xdmf.read_mesh(name="Grid")

    V = FunctionSpace(mesh, ("DG", degree))
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    a = inner(k * grad(u), grad(v)) * dx_ \
        - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
        - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
        + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
        - inner(k * grad(u), v * n) * ds_ \
        - inner(u * n, k * grad(v)) * ds_ \
        + (alpha / h) * inner(k * u, v) * ds_
    L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
        + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    A = assemble_matrix(a, [])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)
    error = mesh.mpi_comm().allreduce(assemble_scalar((u_exact - uh)**2 * dx),
                                      op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Exemplo n.º 14
0
def compute(space, epsilon, weakBnd, skeleton, mol=None):
    u = TrialFunction(space)
    v = TestFunction(space)
    n = FacetNormal(space)
    he = avg(CellVolume(space)) / FacetArea(space)
    hbnd = CellVolume(space) / FacetArea(space)
    x = SpatialCoordinate(space)

    exact = uflFunction(space.gridView,
                        name="exact",
                        order=3,
                        ufl=sin(x[0] * x[1]))
    uh = space.interpolate(exact, name="solution")

    # diffusion factor
    eps = Constant(epsilon, "eps")
    # transport direction and upwind flux
    b = as_vector([1, 0])
    hatb = (dot(b, n) + abs(dot(b, n))) / 2.0
    # characteristic function for left/right boundary
    dD = conditional((1 + x[0]) * (1 - x[0]) < 1e-10, 1, 0)
    # penalty parameter
    beta = Constant(20 * space.order**2, "beta")

    rhs = -(div(eps * grad(exact) - b * exact)) * v * dx
    aInternal = dot(eps * grad(u) - b * u, grad(v)) * dx
    aInternal -= eps * dot(grad(exact), n) * v * (1 - dD) * ds

    diffSkeleton  = eps*beta/he*jump(u)*jump(v)*dS -\
                    eps*dot(avg(grad(u)),n('+'))*jump(v)*dS -\
                    eps*jump(u)*dot(avg(grad(v)),n('+'))*dS
    if weakBnd:
        diffSkeleton += eps*beta/hbnd*(u-exact)*v*dD*ds -\
                        eps*dot(grad(exact),n)*v*dD*ds
    advSkeleton = jump(hatb * u) * jump(v) * dS
    if weakBnd:
        advSkeleton += (hatb * u + (dot(b, n) - hatb) * exact) * v * dD * ds

    if skeleton:
        form = aInternal + diffSkeleton + advSkeleton
    else:
        form = aInternal

    if weakBnd and skeleton:
        strongBC = None
    else:
        strongBC = DirichletBC(space, exact, dD)

    if space.storage[0] == "numpy":
        solver = {
            "solver": ("suitesparse", "umfpack"),
            "parameters": {
                "newton.verbose": True,
                "newton.linear.verbose": False,
                "newton.linear.tolerance": 1e-5,
            }
        }
    else:
        solver = {
            "solver": "bicgstab",
            "parameters": {
                "newton.linear.preconditioning.method": "ilu",
                "newton.linear.tolerance": 1e-13,
                "newton.verbose": True,
                "newton.linear.verbose": False
            }
        }
    if mol == 'mol':
        scheme = molSolutionScheme([form == rhs, strongBC], **solver)
    else:
        scheme = solutionScheme([form == rhs, strongBC], **solver)

    eoc = []
    info = scheme.solve(target=uh)

    error = dot(uh - exact, uh - exact)
    error0 = math.sqrt(integrate(gridView, error, order=5))
    print(error0, " # output", flush=True)
    for i in range(3):
        gridView.hierarchicalGrid.globalRefine(1)
        uh.interpolate(exact)
        scheme.solve(target=uh)
        error = dot(uh - exact, uh - exact)
        error1 = math.sqrt(integrate(gridView, error, order=5))
        eoc += [math.log(error1 / error0) / math.log(0.5)]
        print(i, error0, error1, eoc, " # output", flush=True)
        error0 = error1

    # print(space.order,epsilon,eoc)
    if (eoc[-1] - (space.order + 1)) < -0.1:
        print("ERROR:", space.order, epsilon, eoc)
    return eoc
Exemplo n.º 15
0
def run_dg_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.
    """
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    with common.Timer("Compile forms"):
        a = inner(k * grad(u), grad(v)) * dx_ \
            - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
            - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
            + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
            - inner(k * grad(u), v * n) * ds_ \
            - inner(u * n, k * grad(v)) * ds_ \
            + (alpha / h) * inner(k * u, v) * ds_
        L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
            + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    with common.Timer("Assemble vector"):
        b = assemble_vector(L)
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)

    with common.Timer("Assemble matrix"):
        A = assemble_matrix(a, [])
        A.assemble()

    with common.Timer("Solve"):
        # Create LU linear solver
        solver = PETSc.KSP().create(MPI.COMM_WORLD)
        solver.setType(PETSc.KSP.Type.PREONLY)
        solver.getPC().setType(PETSc.PC.Type.LU)
        solver.setOperators(A)

        # Solve
        uh = Function(V)
        solver.solve(b, uh.vector)
        uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

    with common.Timer("Error functional compile"):
        # Calculate error
        M = (u_exact - uh)**2 * dx
        M = fem.Form(M)

    with common.Timer("Error assembly"):
        error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall])
    assert np.absolute(error) < 1.0e-14
Exemplo n.º 16
0
def model(space, epsilon, weakBnd, skeleton, useMol):
    u = TrialFunction(space)
    v = TestFunction(space)
    n = FacetNormal(space)
    he = avg(CellVolume(space)) / FacetArea(space)
    hbnd = CellVolume(space) / FacetArea(space)
    x = SpatialCoordinate(space)

    #exact = sin(x[0]*x[1]) # atan(1*x[1])
    exact = uflFunction(space.gridView,
                        name="exact",
                        order=3,
                        ufl=sin(x[0] * x[1]))

    # diffusion factor
    eps = 1  # Constant(epsilon,"eps")
    # transport direction and upwind flux
    b = as_vector([1, 0])
    hatb = (dot(b, n) + abs(dot(b, n))) / 2.0
    # characteristic function for left/right boundary
    dD = conditional((1 + x[0]) * (1 - x[0]) < 1e-10, 1, 0)
    # penalty parameter
    beta = Constant(10 * space.order**2 if space.order > 0 else 1, "beta")

    rhs = (-div(eps * grad(exact) - b * exact) + exact) * v * dx
    aInternal = (dot(eps * grad(u) - b * u, grad(v)) + dot(u, v)) * dx
    diffSkeleton  = eps*beta/he*jump(u)*jump(v)*dS -\
                    eps*dot(avg(grad(u)),n('+'))*jump(v)*dS -\
                    eps*jump(u)*dot(avg(grad(v)),n('+'))*dS
    diffSkeleton -= eps * dot(grad(exact), n) * v * (1 - dD) * ds
    if weakBnd:
        diffSkeleton += eps*beta/hbnd*(u-exact)*v*dD*ds -\
                        eps*dot(grad(exact),n)*v*dD*ds
    advSkeleton = jump(hatb * u) * jump(v) * dS
    if weakBnd:
        advSkeleton += (hatb * u + (dot(b, n) - hatb) * exact) * v * dD * ds

    if skeleton:
        form = aInternal + diffSkeleton + advSkeleton
    else:
        form = aInternal

    if weakBnd and skeleton:
        strongBC = None
    else:
        strongBC = None  # DirichletBC(space,exact,dD)

    if space.storage[0] == "fem":
        solver = {"solver": ("suitesparse", "umfpack")}
    else:
        solver = {
            "solver": "bicgstab",
            "parameters": {
                "newton.linear.preconditioning.method": "jacobi",
                "newton.linear.tolerance": 1e-13
            }
        }
    if useMol:
        scheme = solutionMolScheme([form == rhs, strongBC], **solver)
    else:
        scheme = solutionScheme([form == rhs, strongBC], **solver)
    uh = space.interpolate(exact, name="solution")
    A = linear(scheme)
    return scheme, uh, A, exact
Exemplo n.º 17
0
# with Dirichlet boundary conditions. Here $\varepsilon$ is a small
# constant and $b$ a given vector.
# <codecell>

gridView      = leafGridView([-1, -1], [1, 1], [20, 20])
order = 2
from dune.fem.space import dglegendre as dgSpace
space = dgSpace(gridView, order=order)

from ufl import avg, jump, dS, ds,\
         CellVolume, FacetArea, FacetNormal,\
         as_vector, atan
u    = TrialFunction(space)
v    = TestFunction(space)
n    = FacetNormal(space)
he   = avg( CellVolume(space) ) / FacetArea(space)
hbnd = CellVolume(space) / FacetArea(space)
x    = SpatialCoordinate(space)

# diffusion factor
eps = Constant(0.1,"eps")
# transport direction and upwind flux
b    = as_vector([1,0])
hatb = (dot(b, n) + abs(dot(b, n)))/2.0
# boundary values (for left/right boundary)
dD   = conditional((1+x[0])*(1-x[0])<1e-10,1,0)
g    = conditional(x[0]<0,atan(10*x[1]),0)
# penalty parameter
beta = 10*order*order

aInternal     = dot(eps*grad(u) - b*u, grad(v)) * dx
Exemplo n.º 18
0
# Copyright (C) 2009 Kristian B. Oelgaard
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Restriction of a finite element.
# The below syntax show how one can restrict a higher order Lagrange element
# to only take into account those DOFs that live on the facets.
from ufl import (FiniteElement, TestFunction, TrialFunction, avg, dS, ds,
                 triangle)

# Restricted element
CG_R = FiniteElement("Lagrange", triangle, 4)["facet"]
u_r = TrialFunction(CG_R)
v_r = TestFunction(CG_R)
a = avg(v_r) * avg(u_r) * dS + v_r * u_r * ds
Exemplo n.º 19
0
top = 1.0
if dim == 3:
    top = ufl.conditional(x[2] > 1.25, 1, 0)

initial_u = iu(x[1]) * top + iu(2.5 - x[1]) * (1.0 - top)
initial_v = ufl.conditional(x[0] < 1.25, 0.5, 0)

uh = space.interpolate(initial_u, name="u")
uh_n = uh.copy()
vh = space.interpolate(initial_v, name="v")
vh_n = vh.copy()

u = ufl.TrialFunction(space)
phi = ufl.TestFunction(space)
hT = ufl.MaxCellEdgeLength(space.cell())
hS = ufl.avg(ufl.MaxFacetEdgeLength(space.cell()))
hs = ufl.MaxFacetEdgeLength(space.cell())('+')
n = ufl.FacetNormal(space.cell())

ustar = lambda v: (v + spiral_b) / spiral_a
diffusiveFlux = lambda w, d: spiral_D * d
source = lambda u1, u2, u3, v: -1 / spiral_eps * u1 * (1 - u2) * (u3 - ustar(v)
                                                                  )
source = lambda u1, u2, u3, v: -1 / spiral_eps * u1 * (1 - u2) * (u3 - ustar(v)
                                                                  )

xForm = inner(diffusiveFlux(u, grad(u)), grad(phi)) * dx
xForm += ufl.conditional(uh_n < ustar(vh_n), source(u, uh_n, uh_n, vh_n),
                         source(uh_n, u, uh_n, vh_n)) * phi * dx

# <markdowncell>
Exemplo n.º 20
0
uh_pm1 = spcpm.interpolate( initial_u, name="u_p-1" )
uh_n = uh.copy()
vh   = space.interpolate( initial_v, name="v" )
vh_n = vh.copy()


# <markdowncell>
# Setting up the model
# <codecell>

u   = ufl.TrialFunction(space)
phi = ufl.TestFunction(space)
n   = ufl.FacetNormal(space)
penalty = 5 * (maxOrder * ( maxOrder + 1 )) * spiral_D
hT  = ufl.MaxCellEdgeLength(space)
hS  = ufl.avg( ufl.MaxFacetEdgeLength(space) )
hs =  ufl.MaxFacetEdgeLength(space)('+')

ustar          = lambda v: (v+spiral_b)/spiral_a

diffusiveFlux  = lambda w,d: spiral_D * d
source         = lambda u1,u2,u3,v: -1/spiral_eps * u1*(1-u2)*(u3-ustar(v))

xForm  = inner(diffusiveFlux(u,grad(u)), grad(phi)) * dx
xForm += ufl.conditional(uh_n<ustar(vh_n), source(u,uh_n,uh_n,vh_n), source(uh_n,u,uh_n,vh_n)) * phi * dx

# dg terms
# xForm -= ( inner( outer(jump(u), n('+')), avg(diffusiveFlux(u,grad(phi)))) +\
#            inner( avg(diffusiveFlux(u,grad(u))), outer(jump(phi), n('+'))) ) * dS
# xForm += penalty/hS * inner(jump(u), jump(phi)) * dS
Exemplo n.º 21
0
    # Test and trial functions
    vq = BlockTestFunction(W)
    (v, q) = block_split(vq)
    up = BlockTrialFunction(W)
    (u, p) = block_split(up)

    w = BlockFunction(W)
    w0 = BlockFunction(W)
    (u0, p0) = block_split(w0)

    n = FacetNormal(mesh)
    vc = CellVolume(mesh)
    fc = FacetArea(mesh)

    h = vc / fc
    h_avg = (vc("+") + vc("-")) / (2 * avg(fc))

    penalty1 = 1.0
    penalty2 = 10.0
    theta = 1.0

    # Constitutive parameters
    K = 1000.e3
    nu = 0.25
    E = K_nu_to_E(K, nu)  # Pa 14

    (mu_l, lmbda_l) = E_nu_to_mu_lmbda(E, nu)

    f_stress_y = Constant(-1.e3)

    f = Constant((0.0, 0.0))  # sink/source for displacement