def test_vector_assemble_matrix_interior():
    mesh = create_unit_square(MPI.COMM_WORLD, 3, 3)
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = form(ufl.inner(ufl.jump(u), ufl.jump(v)) * ufl.dS)
    A = assemble_matrix(a)
    A.assemble()
Exemplo n.º 2
0
def xtest_tetrahedron_integral(space_type, space_order):
    domain = ufl.Mesh(ufl.VectorElement("Lagrange", "tetrahedron", 1))
    temp_points = np.array([[-1., 0., -1.], [0., 0., 0.], [1., 0., 1.],
                            [0., 1., 0.], [0., 0., 1.]])

    for repeat in range(10):
        order = [i for i, j in enumerate(temp_points)]
        shuffle(order)
        points = np.zeros(temp_points.shape)
        for i, j in enumerate(order):
            points[j] = temp_points[i]

        cells = []
        for cell in [[0, 1, 3, 4], [1, 2, 3, 4]]:
            # Randomly number the cell
            cell_order = list(range(4))
            shuffle(cell_order)
            cells.append([order[cell[i]] for i in cell_order])

        mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)
        V = FunctionSpace(mesh, (space_type, space_order))
        Vvec = VectorFunctionSpace(mesh, ("P", 1))
        dofs = [i for i in V.dofmap.cell_dofs(0) if i in V.dofmap.cell_dofs(1)]

        for d in dofs:
            v = Function(V)
            v.vector[:] = [1 if i == d else 0 for i in range(V.dim)]
            if space_type in ["RT", "BDM"]:
                # Hdiv
                def normal(x):
                    values = np.zeros((3, x.shape[1]))
                    values[0] = [1 for i in values[0]]
                    return values

                n = Function(Vvec)
                n.interpolate(normal)
                form = ufl.inner(ufl.jump(v), n) * ufl.dS
            elif space_type in ["N1curl", "N2curl"]:
                # Hcurl
                def tangent1(x):
                    values = np.zeros((3, x.shape[1]))
                    values[1] = [1 for i in values[1]]
                    return values

                def tangent2(x):
                    values = np.zeros((3, x.shape[1]))
                    values[2] = [1 for i in values[2]]
                    return values

                t1 = Function(Vvec)
                t1.interpolate(tangent1)
                t2 = Function(Vvec)
                t2.interpolate(tangent1)
                form = ufl.inner(ufl.jump(v), t1) * ufl.dS
                form += ufl.inner(ufl.jump(v), t2) * ufl.dS
            else:
                form = ufl.jump(v) * ufl.dS

            value = fem.assemble_scalar(form)
            assert np.isclose(value, 0)
Exemplo n.º 3
0
def xtest_quadrilateral_integral(space_type, space_order):
    domain = ufl.Mesh(ufl.VectorElement("Lagrange", "quadrilateral", 1))
    temp_points = np.array([[-1., -1.], [0., 0.], [1., 0.], [-1., 1.],
                            [0., 1.], [2., 2.]])

    for repeat in range(10):
        order = [i for i, j in enumerate(temp_points)]
        shuffle(order)
        points = np.zeros(temp_points.shape)
        for i, j in enumerate(order):
            points[j] = temp_points[i]

        connections = {0: [1, 2], 1: [0, 3], 2: [0, 3], 3: [1, 2]}

        cells = []
        for cell in [[0, 1, 3, 4], [1, 2, 4, 5]]:
            # Randomly number the cell
            start = choice(range(4))
            cell_order = [start]
            for i in range(2):
                diff = choice([
                    i for i in connections[start] if i not in cell_order
                ]) - cell_order[0]
                cell_order += [c + diff for c in cell_order]
            cells.append([order[cell[i]] for i in cell_order])

        mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)
        V = FunctionSpace(mesh, (space_type, space_order))
        Vvec = VectorFunctionSpace(mesh, ("P", 1))
        dofs = [i for i in V.dofmap.cell_dofs(0) if i in V.dofmap.cell_dofs(1)]

        for d in dofs:
            v = Function(V)
            v.vector[:] = [1 if i == d else 0 for i in range(V.dim)]
            if space_type in ["RTCF"]:
                # Hdiv
                def normal(x):
                    values = np.zeros((2, x.shape[1]))
                    values[0] = [1 for i in values[0]]
                    return values

                n = Function(Vvec)
                n.interpolate(normal)
                form = ufl.inner(ufl.jump(v), n) * ufl.dS
            elif space_type in ["RTCE"]:
                # Hcurl
                def tangent(x):
                    values = np.zeros((2, x.shape[1]))
                    values[1] = [1 for i in values[1]]
                    return values

                t = Function(Vvec)
                t.interpolate(tangent)
                form = ufl.inner(ufl.jump(v), t) * ufl.dS
            else:
                form = ufl.jump(v) * ufl.dS

            value = fem.assemble_scalar(form)
            assert np.isclose(value, 0)
Exemplo n.º 4
0
def test_vector_assemble_matrix_interior():
    mesh = dolfinx.UnitSquareMesh(MPI.COMM_WORLD, 3, 3)
    V = dolfinx.VectorFunctionSpace(mesh, ("CG", 1))

    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = ufl.inner(ufl.jump(u), ufl.jump(v)) * ufl.dS
    A = dolfinx.fem.assemble_matrix(a)
    A.assemble()
Exemplo n.º 5
0
def test_integral(cell_type, space_type, space_order):
    if cell_type == "hexahedron" and space_order >= 3:
        pytest.skip("Skipping expensive test on hexahedron")

    random.seed(4)
    for repeat in range(10):
        mesh = random_evaluation_mesh(cell_type)
        tdim = mesh.topology.dim
        V = FunctionSpace(mesh, (space_type, space_order))
        Vvec = VectorFunctionSpace(mesh, ("P", 1))
        dofs = [i for i in V.dofmap.cell_dofs(0) if i in V.dofmap.cell_dofs(1)]

        for d in dofs:
            v = Function(V)
            v.vector[:] = [
                1 if i == d else 0 for i, _ in enumerate(v.vector[:])
            ]
            if space_type in ["RT", "BDM", "RTCF", "NCF", "BDMCF", "AAF"]:
                # Hdiv
                def normal(x):
                    values = np.zeros((tdim, x.shape[1]))
                    values[0] = [1 for i in values[0]]
                    return values

                n = Function(Vvec)
                n.interpolate(normal)
                _form = ufl.inner(ufl.jump(v), n) * ufl.dS
            elif space_type in [
                    "N1curl", "N2curl", "RTCE", "NCE", "BDMCE", "AAE"
            ]:
                # Hcurl
                def tangent(x):
                    values = np.zeros((tdim, x.shape[1]))
                    values[1] = [1 for i in values[1]]
                    return values

                t = Function(Vvec)
                t.interpolate(tangent)
                _form = ufl.inner(ufl.jump(v), t) * ufl.dS
                if tdim == 3:

                    def tangent2(x):
                        values = np.zeros((3, x.shape[1]))
                        values[2] = [1 for i in values[2]]
                        return values

                    t2 = Function(Vvec)
                    t2.interpolate(tangent2)
                    _form += ufl.inner(ufl.jump(v), t2) * ufl.dS
            else:
                _form = ufl.jump(v) * ufl.dS

            value = assemble_scalar(form(_form))
            assert np.isclose(value, 0)
Exemplo n.º 6
0
def test_integral(cell_type, space_type, space_order):
    # TODO: Fix jump integrals in FFC by passing in full info for both cells, then re-enable these tests
    pytest.xfail()

    random.seed(4)
    for repeat in range(10):
        mesh = random_evaluation_mesh(cell_type)
        tdim = mesh.topology.dim
        V = FunctionSpace(mesh, (space_type, space_order))
        Vvec = VectorFunctionSpace(mesh, ("P", 1))
        dofs = [i for i in V.dofmap.cell_dofs(0) if i in V.dofmap.cell_dofs(1)]

        for d in dofs:
            v = Function(V)
            v.vector[:] = [1 if i == d else 0 for i in range(V.dim)]
            if space_type in ["RT", "BDM", "RTCF", "NCF"]:
                # Hdiv
                def normal(x):
                    values = np.zeros((tdim, x.shape[1]))
                    values[0] = [1 for i in values[0]]
                    return values

                n = Function(Vvec)
                n.interpolate(normal)
                form = ufl.inner(ufl.jump(v), n) * ufl.dS
            elif space_type in ["N1curl", "N2curl", "RTCE", "NCE"]:
                # Hcurl
                def tangent(x):
                    values = np.zeros((tdim, x.shape[1]))
                    values[1] = [1 for i in values[1]]
                    return values

                t = Function(Vvec)
                t.interpolate(tangent)
                form = ufl.inner(ufl.jump(v), t) * ufl.dS
                if tdim == 3:

                    def tangent2(x):
                        values = np.zeros((3, x.shape[1]))
                        values[2] = [1 for i in values[2]]
                        return values

                    t2 = Function(Vvec)
                    t2.interpolate(tangent2)
                    form += ufl.inner(ufl.jump(v), t2) * ufl.dS
            else:
                form = ufl.jump(v) * ufl.dS

            value = fem.assemble_scalar(form)
            assert np.isclose(value, 0)
Exemplo n.º 7
0
def test_interior_facet_integral(mode):
    cell = ufl.triangle
    element = ufl.FiniteElement("Lagrange", cell, 1)
    u, v = ufl.TrialFunction(element), ufl.TestFunction(element)
    a0 = ufl.inner(ufl.jump(ufl.grad(u)), ufl.jump(ufl.grad(v))) * ufl.dS
    forms = [a0]
    compiled_forms, module = ffc.codegeneration.jit.compile_forms(
        forms, parameters={'scalar_type': mode})

    for f, compiled_f in zip(forms, compiled_forms):
        assert compiled_f.rank == len(f.arguments())

    ffi = cffi.FFI()

    form0 = compiled_forms[0][0]
    ids = np.zeros(form0.num_interior_facet_integrals, dtype=np.int32)
    form0.get_interior_facet_integral_ids(ffi.cast('int *', ids.ctypes.data))
    assert ids[0] == -1

    ffi = cffi.FFI()
    c_type, np_type = float_to_type(mode)

    integral0 = form0.create_interior_facet_integral(-1)
    A = np.zeros((6, 6), dtype=np_type)
    w = np.array([], dtype=np_type)
    c = np.array([], dtype=np.float64)

    facets = np.array([0, 2], dtype=np.int32)
    orients = np.array([1, 1], dtype=np.int32)

    coords = np.array(
        [[0.0, 0.0, 1.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 1.0, 1.0, 1.0]],
        dtype=np.float64)

    integral0.tabulate_tensor(ffi.cast('{}  *'.format(c_type), A.ctypes.data),
                              ffi.cast('{}  *'.format(c_type), w.ctypes.data),
                              ffi.cast('{}  *'.format(c_type), c.ctypes.data),
                              ffi.cast('double *', coords.ctypes.data),
                              ffi.cast('int *', facets.ctypes.data),
                              ffi.cast('int *', orients.ctypes.data))

    print(A)
Exemplo n.º 8
0
def test_interior_facet_integral(mode, compile_args):
    cell = ufl.triangle
    element = ufl.FiniteElement("Lagrange", cell, 1)
    u, v = ufl.TrialFunction(element), ufl.TestFunction(element)
    a0 = ufl.inner(ufl.jump(ufl.grad(u)), ufl.jump(ufl.grad(v))) * ufl.dS
    forms = [a0]
    compiled_forms, module, code = ffcx.codegeneration.jit.compile_forms(
        forms,
        parameters={'scalar_type': mode},
        cffi_extra_compile_args=compile_args)

    for f, compiled_f in zip(forms, compiled_forms):
        assert compiled_f.rank == len(f.arguments())

    ffi = cffi.FFI()

    form0 = compiled_forms[0]

    ffi = cffi.FFI()
    c_type, np_type = float_to_type(mode)

    integral0 = form0.integrals(module.lib.interior_facet)[0]
    A = np.zeros((6, 6), dtype=np_type)
    w = np.array([], dtype=np_type)
    c = np.array([], dtype=np.float64)

    facets = np.array([0, 2], dtype=np.intc)
    perms = np.array([0, 1], dtype=np.uint8)

    coords = np.array([[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0],
                       [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0]],
                      dtype=np.float64)

    integral0.tabulate_tensor(ffi.cast('{}  *'.format(c_type), A.ctypes.data),
                              ffi.cast('{}  *'.format(c_type), w.ctypes.data),
                              ffi.cast('{}  *'.format(c_type), c.ctypes.data),
                              ffi.cast('double *', coords.ctypes.data),
                              ffi.cast('int *', facets.ctypes.data),
                              ffi.cast('uint8_t *', perms.ctypes.data))
Exemplo n.º 9
0
 def b(tau_S, v):
     n = FacetNormal(mesh)
     return inner(tau_S, grad(grad(v))) * dx \
         - ufl.dot(ufl.dot(tau_S('+'), n('+')), n('+')) * jump(grad(v), n) * dS \
         - ufl.dot(ufl.dot(tau_S, n), n) * ufl.dot(grad(v), n) * ds
Exemplo n.º 10
0
                                                                  )
source = lambda u1, u2, u3, v: -1 / spiral_eps * u1 * (1 - u2) * (u3 - ustar(v)
                                                                  )

xForm = inner(diffusiveFlux(u, grad(u)), grad(phi)) * dx
xForm += ufl.conditional(uh_n < ustar(vh_n), source(u, uh_n, uh_n, vh_n),
                         source(uh_n, u, uh_n, vh_n)) * phi * dx

# <markdowncell>
# To handle the possible non conforming intersection we add DG type
# skeleton terms:
# <codecell>

penalty = 5 * (order * (order + 1)) * spiral_D
if nonConforming:
    xForm -= ( inner( outer(jump(u), n('+')), avg(diffusiveFlux(u,grad(phi)))) +\
               inner( avg(diffusiveFlux(u,grad(u))), outer(jump(phi), n('+'))) ) * dS
    xForm += penalty / hS * inner(jump(u), jump(phi)) * dS

# <markdowncell>
# After adding the time discretization (a simple backward Euler scheme),
# the model is now completely implemented and the scheme can be created:
# <codecell>

form = (inner(u, phi) - inner(uh_n, phi)) * dx + dt * xForm
solverParameters =\
       {"newton.tolerance": 1e-8,
        "newton.linear.tolerance": 1e-12,
        "newton.linear.preconditioning.method": "amg-ilu",
        "newton.linear.maxiterations":1000,
        "newton.verbose": False,
Exemplo n.º 11
0
 def setup_problem(self, debug=False):
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         drho_integral = self.tdrho * self.wrho * self.dx
         dU_integral = self.tdU * self.wU * self.dx
         self.A = fe.assemble(drho_integral + dU_integral)
         # if self.solver_type == 'lu':
         #     self.solver = fe.LUSolver(
         #         self.A,
         #         method=self.solver_type
         #     )
         #     self.solver.parameters['reuse_factorization'] = True
         # else:
         #     self.solver = fe.KrylovSolver(
         #         self.A,
         #         self.solver_type,
         #         self.preconditioner_type
         #     )
         self.dsol = Function(self.VS)
         self.drho, self.dU = self.dsol.sub(0), self.dsol.sub(1)
     #
     # assemble RHS (has to be done for each time point)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.params['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rho_min = self.params['rho_min']
         self.rhopen = self.params['rhopen']
         self.grhopen = self.params['grhopen']
         self.v = -ufl.grad(self.V(self.iU, self.irho))
         self.flux = self.v * self.irho
         self.vn = ufl.max_value(ufl.dot(self.v, self.n), 0)
         self.facet_flux = (self.vn('+') * self.irho('+') -
                            self.vn('-') * self.irho('-'))
         self.rho_flux_jump = -self.facet_flux * ufl.jump(
             self.wrho) * self.dS
         self.rho_grad_move = ufl.dot(self.flux, ufl.grad(
             self.wrho)) * self.dx
         self.rho_penalty = -(
             (self.rhopen * self.degree**2 / self.havg) * ufl.dot(
                 ufl.jump(self.irho, self.n), ufl.jump(self.wrho, self.n)) *
             self.dS)
         # self.facet_flux = (
         #     self.vn('+')*self.rho('+') - self.vn('-')*self.rho('-')
         # )
         # self.rho_flux_jump = -self.facet_flux*ufl.jump(self.wrho)*self.dS
         # self.rho_grad_move = ufl.dot(self.flux, ufl.grad(self.wrho))*self.dx
         self.jump_grhow = (
             self.s2 * ufl.jump(self.wrho * ufl.grad(self.irho), self.n) *
             self.dS)
         self.rho_diffusion = -self.s2 * ufl.dot(ufl.grad(
             self.irho), ufl.grad(self.wrho)) * self.dx
         # self.rho_penalty = -(
         #     (self.rhopen * self.degree**2 / self.havg) *
         #     ufl.dot(ufl.jump(self.rho, self.n),
         #            ufl.jump(self.wrho, self.n)) * self.dS
         # )
         self.grho_penalty = -(self.grhopen * self.degree**2 *
                               (ufl.jump(ufl.grad(self.irho), self.n) *
                                ufl.jump(ufl.grad(self.wrho), self.n)) *
                               self.dS)
         self.rho_terms = (
             # advection terms
             self.rho_flux_jump + self.rho_grad_move +
             # diffusive terms
             self.rho_diffusion + self.jump_grhow +
             # penalty terms (to enforce continuity)
             self.rho_penalty + self.grho_penalty)
     if not hasattr(self, 'U_terms'):
         self.U_min = self.params['U_min']
         self.gamma = self.params['gamma']
         self.s = self.params['s']
         self.D = self.params['D']
         self.Upen = self.params['Upen']
         self.gUpen = self.params['gUpen']
         self.U_decay = -self.gamma * self.iU * self.wU * self.dx
         self.U_secretion = self.s * self.irho * self.wU * self.dx
         self.jump_gUw = (self.D *
                          ufl.jump(self.wU * ufl.grad(self.iU), self.n) *
                          self.dS)
         self.U_diffusion = -self.D * ufl.dot(ufl.grad(self.iU),
                                              ufl.grad(self.wU)) * self.dx
         self.U_penalty = -(
             (self.Upen * self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(self.iU, self.n), ufl.jump(self.wU, self.n)) *
             self.dS)
         self.gU_penalty = -(self.gUpen * self.degree**2 *
                             (ufl.jump(ufl.grad(self.iU), self.n) *
                              ufl.jump(ufl.grad(self.wU), self.n)) *
                             self.dS)
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Exemplo n.º 12
0
 def setup_problem(self, debug=False):
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         drho_integral = vectotal([
             tdrho * wrho * self.dx
             for tdrho, wrho in zip(self.tdrhos, self.wrhos)
         ])
         dU_integral = vectotal(
             [tdU * wU * self.dx for tdU, wU in zip(self.tdUs, self.wUs)])
         self.A = fe.assemble(drho_integral + dU_integral)
         for bc in self.bcs:
             bc.apply(self.A)
         self.dsol = Function(self.VS)
         self.drhos = self.dsol.split()[:2**self.dim]
         self.dUs = self.dsol.split()[2**self.dim:]
     #
     # These are the values of rho and U themselves (not their
     # symmetrized versions) on all subdomains of the original
     # domain.
     #
     if not hasattr(self, 'rhosds'):
         self.rhosds = matmul(self.eomat, self.irhos)
     # self.Usds is a list of nligands lists. Sublist i is of
     # length 2**dim and lists the value of ligand i on each of the
     # 2**dim subdomains.
     #
     if not hasattr(self, 'Usds'):
         self.Usds = [
             matmul(self.eomat,
                    self.iUs[i * 2**self.dim:(i + 1) * 2**self.dim])
             for i in range(self.nligands)
         ]
     #
     # assemble RHS (for each time point, but compile only once)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.params['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rho_min = self.params['rho_min']
         self.rhopen = self.params['rhopen']
         self.grhopen = self.params['grhopen']
         #
         # Compute fluxes on subdomains.
         # Vsds is a list of length 2**dim, the value of V on each
         # subdomain.
         #
         self.Vsds = []
         for Usd, rhosd in zip(zip(*self.Usds), self.rhosds):
             self.Vsds.append(self.V(Usd, rhosd))
         #
         # I may need to adjust the signs of the subdomain vs by
         # the symmetries of the combinations
         #
         self.vsds = [
             -ufl.grad(Vsd) - (self.s2 * ufl.grad(rhosd) /
                               ufl.max_value(rhosd, self.rho_min))
             for Vsd, rhosd in zip(self.Vsds, self.rhosds)
         ]
         self.fluxsds = [
             vsd * rhosd for vsd, rhosd in zip(self.vsds, self.rhosds)
         ]
         self.vnsds = [
             ufl.max_value(ufl.dot(vsd, self.n), 0) for vsd in self.vsds
         ]
         self.facet_fluxsds = [
             (vnsd('+') * ufl.max_value(rhosd('+'), 0.0) -
              vnsd('-') * ufl.max_value(rhosd('-'), 0.0))
             for vnsd, rhosd in zip(self.vnsds, self.rhosds)
         ]
         #
         # Now combine the subdomain fluxes to get the fluxes for
         # the symmetrized functions
         #
         self.fluxs = matmul((2.0**-self.dim) * self.eomat, self.fluxsds)
         self.facet_fluxs = matmul((2.0**-self.dim) * self.eomat,
                                   self.facet_fluxsds)
         self.rho_flux_jump = vectotal([
             -facet_flux * ufl.jump(wrho) * self.dS
             for facet_flux, wrho in zip(self.facet_fluxs, self.wrhos)
         ])
         self.rho_grad_move = vectotal([
             ufl.dot(flux, ufl.grad(wrho)) * self.dx
             for flux, wrho in zip(self.fluxs, self.wrhos)
         ])
         self.rho_penalty = vectotal([
             -(self.rhopen * self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(rho, self.n), ufl.jump(wrho, self.n)) *
             self.dS for rho, wrho in zip(self.irhos, self.wrhos)
         ])
         self.grho_penalty = vectotal([
             -self.grhopen * self.degree**2 *
             (ufl.jump(ufl.grad(rho), self.n) *
              ufl.jump(ufl.grad(wrho), self.n)) * self.dS
             for rho, wrho in zip(self.irhos, self.wrhos)
         ])
         self.rho_terms = (self.rho_flux_jump + self.rho_grad_move +
                           self.rho_penalty + self.grho_penalty)
     if not hasattr(self, 'U_terms'):
         self.U_min = self.params['U_min']
         self.Upen = self.params['Upen']
         self.gUpen = self.params['gUpen']
         self.U_decay = 0.0
         self.U_secretion = 0.0
         self.jump_gUw = 0.0
         self.U_diffusion = 0.0
         self.U_penalty = 0.0
         self.gU_penalty = 0.0
         for j, lig in enumerate(self.ligands.ligands()):
             sl = slice(j * 2**self.dim, (j + 1) * 2**self.dim)
             self.U_decay += -lig.gamma * sum([
                 iUi * wUi * self.dx
                 for iUi, wUi in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.U_secretion += lig.s * sum([
                 rho * wU * self.dx
                 for rho, wU in zip(self.irhos, self.wUs[sl])
             ])
             self.jump_gUw += lig.D * sum([
                 ufl.jump(wU * ufl.grad(U), self.n) * self.dS
                 for wU, U in zip(self.wUs[sl], self.iUs[sl])
             ])
             self.U_diffusion += -lig.D * sum([
                 ufl.dot(ufl.grad(U), ufl.grad(wU)) * self.dx
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.U_penalty += -self.Upen * self.degree**2 * sum([
                 (1.0 / self.havg) * ufl.dot(ufl.jump(U, self.n),
                                             ufl.jump(wU, self.n)) * self.dS
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.gU_penalty += -self.gUpen * self.degree**2 * sum([
                 ufl.jump(ufl.grad(U), self.n) *
                 ufl.jump(ufl.grad(wU), self.n) * self.dS
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Exemplo n.º 13
0
# Error estimator
# <codecell>

fvspace = dune.fem.space.finiteVolume(uh.space.grid)
estimate = fvspace.interpolate([0], name="estimate")
estimate_pm1 = fvspace.interpolate([0], name="estimate_pm1")

chi = ufl.TestFunction(fvspace)
hT  = ufl.MaxCellEdgeLength(fvspace.cell())
he  = ufl.MaxFacetEdgeLength(fvspace.cell())('+')
n   = ufl.FacetNormal(fvspace.cell())

residual = (u-uh_n)/dt - div(diffusiveFlux(u,grad(u))) + source(u,u,u,vh)

estimator_ufl = hT**2 * residual**2 * chi * dx +\
                he * inner( jump(diffusiveFlux(u,grad(u))), n('+'))**2 * avg(chi) * dS +\
                1/he * jump(u)**2 * avg(chi) * dS
estimator = dune.fem.operator.galerkin(estimator_ufl)

# <markdowncell>
# Time loop
# <codecell>

nextSaveTime = saveInterval
count = 0
levelFunction = dune.fem.function.levelFunction(gridView)
gridView.writeVTK("spiral", pointdata=[uh,vh], number=count, celldata=[estimate,levelFunction])
count += 1

@gridFunction(gridView,name="pEstimate")
def pEstimator(e,x):
Exemplo n.º 14
0
def xtest_hexahedron_integral(space_type, space_order):
    domain = ufl.Mesh(ufl.VectorElement("Lagrange", "hexahedron", 1))
    temp_points = np.array([[-1., 0., -1.], [0., 0., 0.], [1., 0., 1.],
                            [-1., 1., 1.], [0., 1., 0.], [1., 1., 1.],
                            [-1., 0., 0.], [0., 0., 1.], [1., 0., 2.],
                            [-1., 1., 2.], [0., 1., 1.], [1., 1., 2.]])

    for repeat in range(10):
        order = [i for i, j in enumerate(temp_points)]
        shuffle(order)
        points = np.zeros(temp_points.shape)
        for i, j in enumerate(order):
            points[j] = temp_points[i]

        connections = {
            0: [1, 2, 4],
            1: [0, 3, 5],
            2: [0, 3, 6],
            3: [1, 2, 7],
            4: [0, 5, 6],
            5: [1, 4, 7],
            6: [2, 4, 7],
            7: [3, 5, 6]
        }

        cells = []
        for cell in [[0, 1, 3, 4, 6, 7, 9, 10], [1, 2, 4, 5, 7, 8, 10, 11]]:
            # Randomly number the cell
            start = choice(range(8))
            cell_order = [start]
            for i in range(3):
                diff = choice([
                    i for i in connections[start] if i not in cell_order
                ]) - cell_order[0]
                cell_order += [c + diff for c in cell_order]
            cells.append([order[cell[i]] for i in cell_order])

        mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)
        V = FunctionSpace(mesh, (space_type, space_order))
        Vvec = VectorFunctionSpace(mesh, ("P", 1))
        dofs = [i for i in V.dofmap.cell_dofs(0) if i in V.dofmap.cell_dofs(1)]

        for d in dofs:
            v = Function(V)
            v.vector[:] = [
                1 if i == d else 0 for i in range(v.vector.local_size)
            ]
            if space_type in ["NCF"]:
                # Hdiv
                def normal(x):
                    values = np.zeros((3, x.shape[1]))
                    values[0] = [1 for i in values[0]]
                    return values

                n = Function(Vvec)
                n.interpolate(normal)
                form = ufl.inner(ufl.jump(v), n) * ufl.dS
            elif space_type in ["NCE"]:
                # Hcurl
                def tangent1(x):
                    values = np.zeros((3, x.shape[1]))
                    values[1] = [1 for i in values[1]]
                    return values

                def tangent2(x):
                    values = np.zeros((3, x.shape[1]))
                    values[2] = [1 for i in values[2]]
                    return values

                t1 = Function(Vvec)
                t1.interpolate(tangent1)
                t2 = Function(Vvec)
                t2.interpolate(tangent1)
                form = ufl.inner(ufl.jump(v), t1) * ufl.dS
                form += ufl.inner(ufl.jump(v), t2) * ufl.dS
            else:
                form = ufl.jump(v) * ufl.dS

            value = fem.assemble_scalar(form)
            assert np.isclose(value, 0)
Exemplo n.º 15
0
                       1)  # No normal displacement for solid on left side
    bcd3 = DirichletBC(W.sub(0).sub(0), Constant(0.0), boundaries,
                       3)  # No normal displacement for solid on right side
    bcd4 = DirichletBC(W.sub(0).sub(1), Constant(0.0), boundaries,
                       4)  # No normal displacement for solid on bottom side
    bcs = BlockDirichletBC([[bcd1, bcd3, bcd4], []])

    a = inner(2 * mu_l * strain(u) + lmbda_l * div(u) * I, sym(grad(v))) * dx

    b = inner(-alpha * p * I, sym(grad(v))) * dx

    c = rho * alpha * div(u) * q * dx

    d = (rho * ct * p * q * dx +
         dt * dot(rho * k / vis * grad(p), grad(q)) * dx - dt *
         dot(avg_w(rho * k / vis * grad(p), weight_e(k, n)), jump(q, n)) * dS -
         theta * dt *
         dot(avg_w(rho * k / vis * grad(q), weight_e(k, n)), jump(p, n)) * dS +
         dt * penalty1 / h_avg * avg(rho) * k_e(k, n) / avg(vis) *
         dot(jump(p, n), jump(q, n)) * dS -
         dt * dot(rho * k / vis * grad(p), q * n) * ds(2) -
         dt * dot(rho * k / vis * grad(q), p * n) * ds(2) + dt *
         (penalty2 / h * rho / vis * dot(dot(n, k), n) * dot(p * n, q * n)) *
         ds(2))

    lhs = [[a, b], [c, d]]

    f_u = (inner(f, v) * dx + dot(f_stress_y * n, v) * ds(2))

    f_p = (
        rho * alpha * div(u0) * q * dx + rho * ct * p0 * q * dx +
Exemplo n.º 16
0
 def setup_problem(self, t, debug=False):
     self.set_time(t)
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         logVARIABLE('making matrix A')
         self.drho_integral = sum([
             tdrho * wrho * self.dx
             for tdrho, wrho in zip(self.tdrhos, self.wrhos)
         ])
         self.dU_integral = sum(
             [tdU * wU * self.dx for tdU, wU in zip(self.tdUs, self.wUs)])
         logVARIABLE('assembling A')
         self.A = fe.PETScMatrix()
         logVARIABLE('self.A', self.A)
         fe.assemble(self.drho_integral + self.dU_integral, tensor=self.A)
         logVARIABLE('A assembled. Applying BCs')
         pA = fe.as_backend_type(self.A).mat()
         Adiag = pA.getDiagonal()
         logVARIABLE('Adiag.array', Adiag.array)
         # self.A = fe.assemble(self.drho_integral + self.dU_integral +
         #                      self.dP_integral)
         for bc in self.bcs:
             bc.apply(self.A)
         Adiag = pA.getDiagonal()
         logVARIABLE('Adiag.array', Adiag.array)
         self.dsol = Function(self.VS)
         dsolsplit = self.dsol.split()
         self.drhos, self.dUs = (dsolsplit[:2**self.dim],
                                 dsolsplit[2**self.dim:])
     #
     # assemble RHS (for each time point, but compile only once)
     #
     #
     # These are the values of rho and U themselves (not their
     # symmetrized versions) on all subdomains of the original
     # domain.
     #
     if not hasattr(self, 'rhosds'):
         self.rhosds = matmul(self.eomat, self.irhos)
     # self.Usds is a list of nligands lists. Sublist i is of
     # length 2**dim and lists the value of ligand i on each of the
     # 2**dim subdomains.
     #
     if not hasattr(self, 'Usds'):
         self.Usds = [
             matmul(self.eomat,
                    self.iUs[i * 2**self.dim:(i + 1) * 2**self.dim])
             for i in range(self.nligands)
         ]
     if not hasattr(self, 'rho_terms'):
         logVARIABLE('making rho_terms')
         self.sigma = self.iparams['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rhomin = self.iparams['rhomin']
         self.rhopen = self.iparams['rhopen']
         self.grhopen = self.iparams['grhopen']
         #
         # Compute fluxes on subdomains.
         # Vsds is a list of length 2**dim, the value of V on each
         # subdomain.
         #
         self.Vsds = []
         for Usd, rhosd in zip(zip(*self.Usds), self.rhosds):
             self.Vsds.append(self.V(Usd, ufl.max_value(rhosd,
                                                        self.rhomin)))
         self.vsds = [
             -ufl.grad(Vsd) -
             (self.s2 * ufl.grad(rhosd) / ufl.max_value(rhosd, self.rhomin))
             for Vsd, rhosd in zip(self.Vsds, self.rhosds)
         ]
         self.fluxsds = [
             vsd * rhosd for vsd, rhosd in zip(self.vsds, self.rhosds)
         ]
         self.vnsds = [
             ufl.max_value(ufl.dot(vsd, self.n), 0) for vsd in self.vsds
         ]
         self.facet_fluxsds = [
             (vnsd('+') * ufl.max_value(rhosd('+'), 0.0) -
              vnsd('-') * ufl.max_value(rhosd('-'), 0.0))
             for vnsd, rhosd in zip(self.vnsds, self.rhosds)
         ]
         #
         # Now combine the subdomain fluxes to get the fluxes for
         # the symmetrized functions
         #
         self.fluxs = matmul((2.0**-self.dim) * self.eomat, self.fluxsds)
         self.facet_fluxs = matmul((2.0**-self.dim) * self.eomat,
                                   self.facet_fluxsds)
         self.rho_flux_jump = sum([
             -facet_flux * ufl.jump(wrho) * self.dS
             for facet_flux, wrho in zip(self.facet_fluxs, self.wrhos)
         ])
         self.rho_grad_move = sum([
             ufl.dot(flux, ufl.grad(wrho)) * self.dx
             for flux, wrho in zip(self.fluxs, self.wrhos)
         ])
         self.rho_penalty = sum([
             -(self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(rho, self.n),
                     ufl.jump(self.rhopen * wrho, self.n)) * self.dS
             for rho, wrho in zip(self.irhos, self.wrhos)
         ])
         self.grho_penalty = sum([
             self.degree**2 *
             (ufl.jump(ufl.grad(rho), self.n) *
              ufl.jump(ufl.grad(-self.grhopen * wrho), self.n)) * self.dS
             for rho, wrho in zip(self.irhos, self.wrhos)
         ])
         self.rho_terms = (self.rho_flux_jump + self.rho_grad_move +
                           self.rho_penalty + self.grho_penalty)
         logVARIABLE('rho_terms made')
     if not hasattr(self, 'U_terms'):
         logVARIABLE('making U_terms')
         self.Umin = self.iparams['Umin']
         self.Upen = self.iparams['Upen']
         self.gUpen = self.iparams['gUpen']
         self.U_decay = 0.0
         self.U_secretion = 0.0
         self.jump_gUw = 0.0
         self.U_diffusion = 0.0
         self.U_penalty = 0.0
         self.gU_penalty = 0.0
         for j, lig in enumerate(self.iligands.ligands()):
             sl = slice(j * 2**self.dim, (j + 1) * 2**self.dim)
             self.U_decay += sum([
                 -lig.gamma * iUi * wUi * self.dx
                 for iUi, wUi in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.U_secretion += sum([
                 lig.s * rho * wU * self.dx
                 for rho, wU in zip(self.irhos, self.wUs[sl])
             ])
             self.jump_gUw += sum([
                 ufl.jump(lig.D * wU * ufl.grad(U), self.n) * self.dS
                 for wU, U in zip(self.wUs[sl], self.iUs[sl])
             ])
             self.U_diffusion += sum([
                 -lig.D * ufl.dot(ufl.grad(U), ufl.grad(wU)) * self.dx
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.U_penalty += sum([
                 (-self.degree**2 / self.havg) *
                 ufl.dot(ufl.jump(U, self.n),
                         ufl.jump(self.Upen * wU, self.n)) * self.dS
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
             self.gU_penalty += sum([
                 -self.degree**2 * ufl.jump(ufl.grad(U), self.n) *
                 ufl.jump(ufl.grad(self.gUpen * wU), self.n) * self.dS
                 for U, wU in zip(self.iUs[sl], self.wUs[sl])
             ])
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
         logVARIABLE('U_terms made')
     if not hasattr(self, 'all_terms'):
         logVARIABLE('making all_terms')
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         logVARIABLE('making J_terms')
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Exemplo n.º 17
0
 def setup_problem(self, t, debug=False):
     self.set_time(t)
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         self.drho_integral = self.tdrho * self.wrho * self.dx
         self.dU_integral = sum([
             tdUi * wUi * self.dx for tdUi, wUi in zip(self.tdUs, self.wUs)
         ])
         logVARIABLE('assembling A')
         self.A = PETScMatrix()
         logVARIABLE('self.A', self.A)
         fe.assemble(self.drho_integral + self.dU_integral, tensor=self.A)
         logVARIABLE('A assembled. Applying BCs')
         self.dsol = Function(self.VS)
         dsolsplit = self.dsol.split()
         self.drho, self.dUs = dsolsplit[0], dsolsplit[1:]
     #
     # assemble RHS (for each time point, but compile only once)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.iparams['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rhomin = self.iparams['rhomin']
         self.rhopen = self.iparams['rhopen']
         self.grhopen = self.iparams['grhopen']
         self.v = -ufl.grad(
             self.V(self.iUs, ufl.max_value(self.irho, self.rhomin)) -
             (self.s2 * ufl.grad(self.irho) /
              ufl.max_value(self.irho, self.rhomin)))
         self.flux = self.v * self.irho
         self.vn = ufl.max_value(ufl.dot(self.v, self.n), 0)
         self.facet_flux = ufl.jump(self.vn * ufl.max_value(self.irho, 0.0))
         self.rho_flux_jump = -self.facet_flux * ufl.jump(
             self.wrho) * self.dS
         self.rho_grad_move = ufl.dot(self.flux, ufl.grad(
             self.wrho)) * self.dx
         self.rho_penalty = -(
             (self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(self.irho, self.n),
                     ufl.jump(self.rhopen * self.wrho, self.n)) * self.dS)
         self.grho_penalty = -(
             self.degree**2 *
             (ufl.jump(ufl.grad(self.irho), self.n) * ufl.jump(
                 ufl.grad(self.grhopen * self.wrho), self.n)) * self.dS)
         self.rho_terms = (self.rho_flux_jump + self.rho_grad_move +
                           self.rho_penalty + self.grho_penalty)
     if not hasattr(self, 'U_terms'):
         self.Umin = self.iparams['Umin']
         self.Upen = self.iparams['Upen']
         self.gUpen = self.iparams['gUpen']
         self.U_decay = sum([
             -lig.gamma * iUi * wUi * self.dx for lig, iUi, wUi in zip(
                 self.iligands.ligands(), self.iUs, self.wUs)
         ])
         self.U_secretion = sum([
             lig.s * self.irho * wUi * self.dx
             for lig, wUi in zip(self.iligands.ligands(), self.wUs)
         ])
         self.jump_gUw = sum([
             ufl.jump(lig.D * wUi * ufl.grad(iUi), self.n) * self.dS
             for lig, wUi, iUi in zip(self.iligands.ligands(), self.wUs,
                                      self.iUs)
         ])
         self.U_diffusion = sum([
             -lig.D * ufl.dot(ufl.grad(iUi), ufl.grad(wUi)) * self.dx
             for lig, iUi, wUi in zip(self.iligands.ligands(), self.iUs,
                                      self.wUs)
         ])
         self.U_penalty = sum([
             -(self.degree**2 / self.havg) * ufl.dot(
                 ufl.jump(iUi, self.n), ufl.jump(self.Upen * wUi, self.n)) *
             self.dS for iUi, wUi in zip(self.iUs, self.wUs)
         ])
         self.gU_penalty = sum([
             -self.degree**2 * ufl.jump(ufl.grad(iUi), self.n) *
             ufl.jump(ufl.grad(self.gUpen * wUi), self.n) * self.dS
             for iUi, wUi in zip(self.iUs, self.wUs)
         ])
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Exemplo n.º 18
0
def model(space, epsilon, weakBnd, skeleton, useMol):
    u = TrialFunction(space)
    v = TestFunction(space)
    n = FacetNormal(space)
    he = avg(CellVolume(space)) / FacetArea(space)
    hbnd = CellVolume(space) / FacetArea(space)
    x = SpatialCoordinate(space)

    #exact = sin(x[0]*x[1]) # atan(1*x[1])
    exact = uflFunction(space.gridView,
                        name="exact",
                        order=3,
                        ufl=sin(x[0] * x[1]))

    # diffusion factor
    eps = 1  # Constant(epsilon,"eps")
    # transport direction and upwind flux
    b = as_vector([1, 0])
    hatb = (dot(b, n) + abs(dot(b, n))) / 2.0
    # characteristic function for left/right boundary
    dD = conditional((1 + x[0]) * (1 - x[0]) < 1e-10, 1, 0)
    # penalty parameter
    beta = Constant(10 * space.order**2 if space.order > 0 else 1, "beta")

    rhs = (-div(eps * grad(exact) - b * exact) + exact) * v * dx
    aInternal = (dot(eps * grad(u) - b * u, grad(v)) + dot(u, v)) * dx
    diffSkeleton  = eps*beta/he*jump(u)*jump(v)*dS -\
                    eps*dot(avg(grad(u)),n('+'))*jump(v)*dS -\
                    eps*jump(u)*dot(avg(grad(v)),n('+'))*dS
    diffSkeleton -= eps * dot(grad(exact), n) * v * (1 - dD) * ds
    if weakBnd:
        diffSkeleton += eps*beta/hbnd*(u-exact)*v*dD*ds -\
                        eps*dot(grad(exact),n)*v*dD*ds
    advSkeleton = jump(hatb * u) * jump(v) * dS
    if weakBnd:
        advSkeleton += (hatb * u + (dot(b, n) - hatb) * exact) * v * dD * ds

    if skeleton:
        form = aInternal + diffSkeleton + advSkeleton
    else:
        form = aInternal

    if weakBnd and skeleton:
        strongBC = None
    else:
        strongBC = None  # DirichletBC(space,exact,dD)

    if space.storage[0] == "fem":
        solver = {"solver": ("suitesparse", "umfpack")}
    else:
        solver = {
            "solver": "bicgstab",
            "parameters": {
                "newton.linear.preconditioning.method": "jacobi",
                "newton.linear.tolerance": 1e-13
            }
        }
    if useMol:
        scheme = solutionMolScheme([form == rhs, strongBC], **solver)
    else:
        scheme = solutionScheme([form == rhs, strongBC], **solver)
    uh = space.interpolate(exact, name="solution")
    A = linear(scheme)
    return scheme, uh, A, exact
Exemplo n.º 19
0
hbnd = CellVolume(space) / FacetArea(space)
x    = SpatialCoordinate(space)

# diffusion factor
eps = Constant(0.1,"eps")
# transport direction and upwind flux
b    = as_vector([1,0])
hatb = (dot(b, n) + abs(dot(b, n)))/2.0
# boundary values (for left/right boundary)
dD   = conditional((1+x[0])*(1-x[0])<1e-10,1,0)
g    = conditional(x[0]<0,atan(10*x[1]),0)
# penalty parameter
beta = 10*order*order

aInternal     = dot(eps*grad(u) - b*u, grad(v)) * dx
diffSkeleton  = eps*beta/he*jump(u)*jump(v)*dS -\
                eps*dot(avg(grad(u)),n('+'))*jump(v)*dS -\
                eps*jump(u)*dot(avg(grad(v)),n('+'))*dS
diffSkeleton += eps*beta/hbnd*(u-g)*v*dD*ds -\
                eps*dot(grad(u),n)*v*dD*ds
advSkeleton   = jump(hatb*u)*jump(v)*dS
advSkeleton  += ( hatb*u + (dot(b,n)-hatb)*g )*v*dD*ds
form          = aInternal + diffSkeleton + advSkeleton

scheme = solutionScheme(form==0, solver="gmres",
            parameters={"newton.linear.preconditioning.method":"jacobi"})
uh = space.interpolate(0, name="solution")
scheme.solve(target=uh)
uh.plot()

# <markdowncell>
Exemplo n.º 20
0
def run_dg_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.
    """
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    with common.Timer("Compile forms"):
        a = inner(k * grad(u), grad(v)) * dx_ \
            - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
            - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
            + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
            - inner(k * grad(u), v * n) * ds_ \
            - inner(u * n, k * grad(v)) * ds_ \
            + (alpha / h) * inner(k * u, v) * ds_
        L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
            + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    with common.Timer("Assemble vector"):
        b = assemble_vector(L)
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)

    with common.Timer("Assemble matrix"):
        A = assemble_matrix(a, [])
        A.assemble()

    with common.Timer("Solve"):
        # Create LU linear solver
        solver = PETSc.KSP().create(MPI.COMM_WORLD)
        solver.setType(PETSc.KSP.Type.PREONLY)
        solver.getPC().setType(PETSc.PC.Type.LU)
        solver.setOperators(A)

        # Solve
        uh = Function(V)
        solver.solve(b, uh.vector)
        uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

    with common.Timer("Error functional compile"):
        # Calculate error
        M = (u_exact - uh)**2 * dx
        M = fem.Form(M)

    with common.Timer("Error assembly"):
        error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall])
    assert np.absolute(error) < 1.0e-14
Exemplo n.º 21
0
def test_manufactured_poisson_dg(degree, filename, datadir):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.

    """
    with XDMFFile(MPI.COMM_WORLD,
                  os.path.join(datadir, filename),
                  "r",
                  encoding=XDMFFile.Encoding.ASCII) as xdmf:
        mesh = xdmf.read_mesh(name="Grid")

    V = FunctionSpace(mesh, ("DG", degree))
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    a = inner(k * grad(u), grad(v)) * dx_ \
        - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
        - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
        + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
        - inner(k * grad(u), v * n) * ds_ \
        - inner(u * n, k * grad(v)) * ds_ \
        + (alpha / h) * inner(k * u, v) * ds_
    L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
        + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    A = assemble_matrix(a, [])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)
    error = mesh.mpi_comm().allreduce(assemble_scalar((u_exact - uh)**2 * dx),
                                      op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Exemplo n.º 22
0
def compute(space, epsilon, weakBnd, skeleton, mol=None):
    u = TrialFunction(space)
    v = TestFunction(space)
    n = FacetNormal(space)
    he = avg(CellVolume(space)) / FacetArea(space)
    hbnd = CellVolume(space) / FacetArea(space)
    x = SpatialCoordinate(space)

    exact = uflFunction(space.gridView,
                        name="exact",
                        order=3,
                        ufl=sin(x[0] * x[1]))
    uh = space.interpolate(exact, name="solution")

    # diffusion factor
    eps = Constant(epsilon, "eps")
    # transport direction and upwind flux
    b = as_vector([1, 0])
    hatb = (dot(b, n) + abs(dot(b, n))) / 2.0
    # characteristic function for left/right boundary
    dD = conditional((1 + x[0]) * (1 - x[0]) < 1e-10, 1, 0)
    # penalty parameter
    beta = Constant(20 * space.order**2, "beta")

    rhs = -(div(eps * grad(exact) - b * exact)) * v * dx
    aInternal = dot(eps * grad(u) - b * u, grad(v)) * dx
    aInternal -= eps * dot(grad(exact), n) * v * (1 - dD) * ds

    diffSkeleton  = eps*beta/he*jump(u)*jump(v)*dS -\
                    eps*dot(avg(grad(u)),n('+'))*jump(v)*dS -\
                    eps*jump(u)*dot(avg(grad(v)),n('+'))*dS
    if weakBnd:
        diffSkeleton += eps*beta/hbnd*(u-exact)*v*dD*ds -\
                        eps*dot(grad(exact),n)*v*dD*ds
    advSkeleton = jump(hatb * u) * jump(v) * dS
    if weakBnd:
        advSkeleton += (hatb * u + (dot(b, n) - hatb) * exact) * v * dD * ds

    if skeleton:
        form = aInternal + diffSkeleton + advSkeleton
    else:
        form = aInternal

    if weakBnd and skeleton:
        strongBC = None
    else:
        strongBC = DirichletBC(space, exact, dD)

    if space.storage[0] == "numpy":
        solver = {
            "solver": ("suitesparse", "umfpack"),
            "parameters": {
                "newton.verbose": True,
                "newton.linear.verbose": False,
                "newton.linear.tolerance": 1e-5,
            }
        }
    else:
        solver = {
            "solver": "bicgstab",
            "parameters": {
                "newton.linear.preconditioning.method": "ilu",
                "newton.linear.tolerance": 1e-13,
                "newton.verbose": True,
                "newton.linear.verbose": False
            }
        }
    if mol == 'mol':
        scheme = molSolutionScheme([form == rhs, strongBC], **solver)
    else:
        scheme = solutionScheme([form == rhs, strongBC], **solver)

    eoc = []
    info = scheme.solve(target=uh)

    error = dot(uh - exact, uh - exact)
    error0 = math.sqrt(integrate(gridView, error, order=5))
    print(error0, " # output", flush=True)
    for i in range(3):
        gridView.hierarchicalGrid.globalRefine(1)
        uh.interpolate(exact)
        scheme.solve(target=uh)
        error = dot(uh - exact, uh - exact)
        error1 = math.sqrt(integrate(gridView, error, order=5))
        eoc += [math.log(error1 / error0) / math.log(0.5)]
        print(i, error0, error1, eoc, " # output", flush=True)
        error0 = error1

    # print(space.order,epsilon,eoc)
    if (eoc[-1] - (space.order + 1)) < -0.1:
        print("ERROR:", space.order, epsilon, eoc)
    return eoc
Exemplo n.º 23
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError(
                "The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement(
            [ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        shapes = (V[self.vidx].finat_element.space_dimension(),
                  np.prod(V[self.vidx].shape))
        domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes
        instructions = """
        for i, j
            w[i,j] = w[i,j] + 1
        end
        """
        self.weight = Function(V[self.vidx])
        par_loop((domain, instructions),
                 ufl.dx, {"w": (self.weight, INC)},
                 is_loopy_kernel=True)

        instructions = """
        for i, j
            vec_out[i,j] = vec_out[i,j] + vec_in[i,j]/w[i,j]
        end
        """
        self.average_kernel = (domain, instructions)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_h +
                     gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError(
                        "Dirichlet conditions for scalar variable not supported. Use a weak bc"
                    )
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError(
                        "Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(
                        as_tuple(subdom, numbers.Integral))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {
                "top", "bottom"
            }
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in sorted(extruded_neumann_subdomains):
                    measures.append({
                        "top": ufl.ds_t,
                        "bottom": ufl.ds_b
                    }[subdomain])
                trace_subdomains.extend(
                    sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
                markers = [int(x) for x in mesh.exterior_facets.unique_markers]
                dirichlet_subdomains = set(markers) - neumann_subdomains
                trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand * measure

            trace_bcs = [
                DirichletBC(TraceSpace, Constant(0.0), subdomain)
                for subdomain in trace_subdomains
            ]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [
                DirichletBC(TraceSpace, Constant(0.0), subdomain)
                for subdomain in trace_subdomains
            ]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_bcs,
            form_compiler_parameters=self.ctx.fc_params,
            mat_type=mat_type)

        with timed_region("HybridOperatorAssembly"):
            self._assemble_S()

        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(TraceSpace)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)
Exemplo n.º 24
0
# <markdowncell>
# Error estimator
# <codecell>

fvspace = dune.fem.space.finiteVolume(uh.space.grid)
estimate = fvspace.interpolate([0], name="estimate")

chi = ufl.TestFunction(fvspace)
hT = ufl.MaxCellEdgeLength(fvspace.cell())
he = ufl.MaxFacetEdgeLength(fvspace.cell())('+')
n = ufl.FacetNormal(fvspace.cell())

residual = (u - uh_n) / dt - div(diffusiveFlux) + source(u, u, u, vh)

estimator_ufl = hT**2 * residual**2 * chi * dx +\
                he * inner( jump(diffusiveFlux), n('+'))**2 * avg(chi) * dS
estimator = dune.fem.operator.galerkin(estimator_ufl)

# <markdowncell>
# Time loop
# <codecell>

nextSaveTime = saveInterval
count = 0
levelFunction = dune.fem.function.levelFunction(gridView)
gridView.writeVTK("spiral",
                  pointdata=[uh, vh],
                  number=count,
                  celldata=[estimate, levelFunction])
count += 1
Exemplo n.º 25
0
 def setup_problem(self, debug=False):
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         self.drho_integral = self.tdrho * self.wrho * self.dx
         self.dU_integral = self.tdU * self.wU * self.dx
         self.A = fe.assemble(self.drho_integral + self.dU_integral)
         # if self.solver_type == 'lu':
         #     self.solver = fe.LUSolver(
         #         self.A,
         #     )
         #     self.solver.parameters['reuse_factorization'] = True
         # else:
         #     self.solver = fe.KrylovSolver(
         #         self.A,
         #         self.solver_type,
         #         self.preconditioner_type
         #     )
         # self.solver.parameters.add('linear_solver', self.solver_type)
         # kparams = fe.Parameters('krylov_solver')
         # kparams.add('report', True)
         # kparams.add('nonzero_initial_guess', True)
         # self.solver.parameters.add(kparams)
         # lparams = fe.Parameters('lu_solver')
         # lparams.add('report', True)
         # lparams.add('reuse_factorization', True)
         # lparams.add('verbose', True)
         # self.solver.parameters.add(lparams)
         self.dsol = Function(self.VS)
         self.drho, self.dU = self.dsol.sub(0), self.dsol.sub(1)
     #
     # assemble RHS (for each time point, but compile only once)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.params['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rho_min = self.params['rho_min']
         self.rhopen = self.params['rhopen']
         self.grhopen = self.params['grhopen']
         self.v = -ufl.grad(self.V(self.iU, self.irho)) - (
             self.s2 * ufl.grad(self.irho) /
             ufl.max_value(self.irho, self.rho_min))
         self.flux = self.v * self.irho
         self.vn = ufl.max_value(ufl.dot(self.v, self.n), 0)
         self.facet_flux = (
             self.vn('+') * ufl.max_value(self.irho('+'), 0.0) -
             self.vn('-') * ufl.max_value(self.irho('-'), 0.0))
         self.rho_flux_jump = -self.facet_flux * ufl.jump(
             self.wrho) * self.dS
         self.rho_grad_move = ufl.dot(self.flux, ufl.grad(
             self.wrho)) * self.dx
         self.rho_penalty = -(
             (self.rhopen * self.degree**2 / self.havg) * ufl.dot(
                 ufl.jump(self.irho, self.n), ufl.jump(self.wrho, self.n)) *
             self.dS)
         self.grho_penalty = -(self.grhopen * self.degree**2 *
                               (ufl.jump(ufl.grad(self.irho), self.n) *
                                ufl.jump(ufl.grad(self.wrho), self.n)) *
                               self.dS)
         self.rho_terms = (self.rho_flux_jump + self.rho_grad_move +
                           self.rho_penalty + self.grho_penalty)
     if not hasattr(self, 'U_terms'):
         self.U_min = self.params['U_min']
         self.gamma = self.params['gamma']
         self.s = self.params['s']
         self.D = self.params['D']
         self.Upen = self.params['Upen']
         self.gUpen = self.params['gUpen']
         self.U_decay = -self.gamma * self.iU * self.wU * self.dx
         self.U_secretion = self.s * self.irho * self.wU * self.dx
         self.jump_gUw = (self.D *
                          ufl.jump(self.wU * ufl.grad(self.iU), self.n) *
                          self.dS)
         self.U_diffusion = -self.D * ufl.dot(ufl.grad(self.iU),
                                              ufl.grad(self.wU)) * self.dx
         self.U_penalty = -(
             (self.Upen * self.degree**2 / self.havg) *
             ufl.dot(ufl.jump(self.iU, self.n), ufl.jump(self.wU, self.n)) *
             self.dS)
         self.gU_penalty = -(self.gUpen * self.degree**2 *
                             (ufl.jump(ufl.grad(self.iU), self.n) *
                              ufl.jump(ufl.grad(self.wU), self.n)) *
                             self.dS)
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty)
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Exemplo n.º 26
0
# The bilinear form a(v, u) and linear form L(v) for
# Poisson's equation in a discontinuous Galerkin (DG)
# formulation.
from ufl import (Coefficient, Constant, FacetNormal, FiniteElement,
                 TestFunction, TrialFunction, avg, dot, dS, ds, dx, grad,
                 inner, jump, triangle)

element = FiniteElement("Discontinuous Lagrange", triangle, 1)

v = TestFunction(element)
u = TrialFunction(element)
f = Coefficient(element)

n = FacetNormal(triangle)
h = Constant(triangle)

gN = Coefficient(element)

alpha = 4.0
gamma = 8.0

a = inner(grad(v), grad(u)) * dx \
    - inner(avg(grad(v)), jump(u, n)) * dS \
    - inner(jump(v, n), avg(grad(u))) * dS \
    + alpha / h('+') * dot(jump(v, n), jump(u, n)) * dS \
    - inner(grad(v), u * n) * ds \
    - inner(v * n, grad(u)) * ds \
    + gamma / h * v * u * ds

L = v * f * dx + v * gN * ds
Exemplo n.º 27
0
 def setup_problem(self, debug=False):
     #
     # assemble the matrix, if necessary (once for all time points)
     #
     if not hasattr(self, 'A'):
         drho_integral = vectotal(
             [tdrho*wrho*self.dx for tdrho,wrho in
              zip(self.tdrhos, self.wrhos)]
         )
         dU_integral = vectotal(
             [tdU*wU*self.dx
              for tdU,wU in zip(self.tdUs, self.wUs)
             ]
         )
         self.A = fe.assemble(drho_integral + dU_integral)
         for bc in self.bcs:
             bc.apply(self.A)
         # if self.solver_type == 'lu':
         #     self.solver = fe.LUSolver(
         #         self.A,
         #     )
         #     self.solver.parameters['reuse_factorization'] = True
         # else:
         #     self.solver = fe.KrylovSolver(
         #         self.A,
         #         self.solver_type,
         #         self.preconditioner_type
         #     )
         self.dsol = Function(self.VS)
         self.drhos = self.dsol.split()[: 2**self.dim]
         self.dUs = self.dsol.split()[2**self.dim :]
     #
     # These are the values of rho and U themselves (not their
     # symmetrized versions) on all subdomains of the original
     # domain.
     #
     if not hasattr(self, 'rhosds'):
         self.rhosds = matmul(self.eomat, self.irhos)
     if not hasattr(self, 'Usds'):
         self.Usds = matmul(self.eomat, self.iUs)
     #
     # assemble RHS (for each time point, but compile only once)
     #
     if not hasattr(self, 'rho_terms'):
         self.sigma = self.params['sigma']
         self.s2 = self.sigma * self.sigma / 2
         self.rho_min = self.params['rho_min']
         self.rhopen = self.params['rhopen']
         self.grhopen = self.params['grhopen']
         #
         # Compute fluxes on subdomains.
         #
         self.Vsds = [self.V(Usd, rhosd) for Usd,rhosd in
                      zip(self.Usds, self.rhosds)]
         #
         # I may need to adjust the signs of the subdomain vs by
         # the symmetries of the combinations
         #
         self.vsds = [-ufl.grad(Vsd) - (
             self.s2*ufl.grad(rhosd)/ufl.max_value(rhosd, self.rho_min)
         ) for Vsd,rhosd in zip(self.Vsds, self.rhosds)]
         self.fluxsds = [vsd * rhosd for vsd,rhosd in
                         zip(self.vsds, self.rhosds)]
         self.vnsds = [ufl.max_value(ufl.dot(vsd, self.n), 0)
                       for vsd in self.vsds]
         self.facet_fluxsds = [(
             vnsd('+')*ufl.max_value(rhosd('+'), 0.0) -
             vnsd('-')*ufl.max_value(rhosd('-'), 0.0)
         ) for vnsd,rhosd in zip(self.vnsds, self.rhosds)]
         #
         # Now combine the subdomain fluxes to get the fluxes for
         # the symmetrized functions
         #
         self.fluxs = matmul((2.0**-self.dim)*self.eomat,
                             self.fluxsds)
         self.facet_fluxs = matmul((2.0**-self.dim)*self.eomat,
                                   self.facet_fluxsds)
         self.rho_flux_jump = vectotal(
             [-facet_flux*ufl.jump(wrho)*self.dS
              for facet_flux,wrho in
              zip(self.facet_fluxs, self.wrhos)]
         )
         self.rho_grad_move = vectotal(
             [ufl.dot(flux, ufl.grad(wrho))*self.dx
              for flux,wrho in
              zip(self.fluxs, self.wrhos)]
         )
         self.rho_penalty = vectotal(
             [-(self.rhopen * self.degree**2 / self.havg) *
              ufl.dot(ufl.jump(rho, self.n),
                     ufl.jump(wrho, self.n)) * self.dS
              for rho,wrho in zip(self.irhos, self.wrhos)]
         )
         self.grho_penalty = vectotal(
             [-self.grhopen * self.degree**2 *
              (ufl.jump(ufl.grad(rho), self.n) *
               ufl.jump(ufl.grad(wrho), self.n)) * self.dS
              for rho,wrho in zip(self.irhos, self.wrhos)]
         )
         self.rho_terms = (
             self.rho_flux_jump + self.rho_grad_move +
             self.rho_penalty + self.grho_penalty
         )
     if not hasattr(self, 'U_terms'):
         self.U_min = self.params['U_min']
         self.gamma = self.params['gamma']
         self.s = self.params['s']
         self.D = self.params['D']
         self.Upen = self.params['Upen']
         self.gUpen = self.params['gUpen']
         self.U_decay = vectotal(
             [-self.gamma * U * wU * self.dx
              for U,wU in zip(self.iUs, self.wUs)]
         )
         self.U_secretion = vectotal(
             [self.s * rho * wU * self.dx
              for rho, wU in zip(self.irhos, self.wUs)]
         )
         self.jump_gUw = vectotal(
             [self.D * ufl.jump(wU * ufl.grad(U), self.n) * self.dS
              for wU, U in zip(self.wUs, self.iUs)
             ]
         )
         self.U_diffusion = vectotal(
             [-self.D
              * ufl.dot(ufl.grad(U), ufl.grad(wU))*self.dx
              for U,wU in zip(self.iUs, self.wUs)
             ]
         )
         self.U_penalty = vectotal(
             [-(self.Upen * self.degree**2 / self.havg)
              * ufl.dot(ufl.jump(U, self.n), ufl.jump(wU, self.n))*self.dS
              for U,wU in zip(self.iUs, self.wUs)
             ]
         )
         self.gU_penalty = vectotal(
             [-self.gUpen * self.degree**2 *
              ufl.jump(ufl.grad(U), self.n) *
              ufl.jump(ufl.grad(wU), self.n) * self.dS
              for U,wU in zip(self.iUs, self.wUs)
             ]
         )
         self.U_terms = (
             # decay and secretion
             self.U_decay + self.U_secretion +
             # diffusion
             self.jump_gUw + self.U_diffusion +
             # penalties (to enforce continuity)
             self.U_penalty + self.gU_penalty
         )
     if not hasattr(self, 'all_terms'):
         self.all_terms = self.rho_terms + self.U_terms
     if not hasattr(self, 'J_terms'):
         self.J_terms = fe.derivative(self.all_terms, self.sol)
Exemplo n.º 28
0
CC = FF.T * FF
Fv = variable(FF)
S = diff(freeEnergy(Fv.T * Fv, CCv), Fv)  # first PK stress
dl_interp(CC, C)
dl_interp(CC, Cn)

my_identity = grad(SpatialCoordinate(mesh))

dl_interp(my_identity, CCv)
dl_interp(my_identity, Cvn)
dl_interp(my_identity, C_quart)
dl_interp(my_identity, C_thr_quart)
dl_interp(my_identity, C_half)

a_uv = (derivative(freeEnergy(CC, CCv), u, v) * dx +
        qvals / h_avg * dot(jump(u), jump(v)) * dS)
jac = derivative(a_uv, u, du)

# assign DirichletBC
left_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, left)
right_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, right)
bottom_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, bottom)
back_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, back)

left_dofs = fem.locate_dofs_topological(V.sub(0), mesh.topology.dim - 1,
                                        left_facets)
right_dofs = fem.locate_dofs_topological(V.sub(0), mesh.topology.dim - 1,
                                         right_facets)
back_dofs = fem.locate_dofs_topological(V.sub(2), mesh.topology.dim - 1,
                                        back_facets)
bottom_dofs = fem.locate_dofs_topological(V.sub(1), mesh.topology.dim - 1,
Exemplo n.º 29
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError("The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        shapes = (V[self.vidx].finat_element.space_dimension(),
                  np.prod(V[self.vidx].shape))
        domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes
        instructions = """
        for i, j
            w[i,j] = w[i,j] + 1
        end
        """
        self.weight = Function(V[self.vidx])
        par_loop((domain, instructions), ufl.dx, {"w": (self.weight, INC)},
                 is_loopy_kernel=True)

        instructions = """
        for i, j
            vec_out[i,j] = vec_out[i,j] + vec_in[i,j]/w[i,j]
        end
        """
        self.average_kernel = (domain, instructions)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d),
                   trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_h
                     + gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError("Dirichlet conditions for scalar variable not supported. Use a weak bc")
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError("Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(as_tuple(subdom, int))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {"top", "bottom"}
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in sorted(extruded_neumann_subdomains):
                    measures.append({"top": ufl.ds_t, "bottom": ufl.ds_b}[subdomain])
                trace_subdomains.extend(sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
                markers = [int(x) for x in mesh.exterior_facets.unique_markers]
                dirichlet_subdomains = set(markers) - neumann_subdomains
                trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand*measure

            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp, bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(schur_comp,
                                                    tensor=self.S,
                                                    bcs=trace_bcs,
                                                    form_compiler_parameters=self.ctx.fc_params,
                                                    mat_type=mat_type)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(TraceSpace)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)