Exemplo n.º 1
0
def test_lhs_rhs_simple():
    """Test taking lhs/rhs of DOLFIN specific forms (constants
    without cell). """

    mesh = RectangleMesh(MPI.comm_world, [numpy.array([0.0, 0.0, 0.0]),
                                          numpy.array([2.0, 1.0, 0.0])],
                         [3, 5], CellType.triangle)
    V = FunctionSpace(mesh, "CG", 1)
    f = 2.0
    g = 3.0
    v = TestFunction(V)
    u = TrialFunction(V)

    F = inner(g * grad(f * v), grad(u)) * dx + f * v * dx
    a, L = system(F)

    Fl = lhs(F)
    Fr = rhs(F)
    assert(Fr)

    a0 = inner(grad(v), grad(u)) * dx

    n = assemble(a).norm("frobenius")  # noqa
    nl = assemble(Fl).norm("frobenius")  # noqa
    n0 = 6.0 * assemble(a0).norm("frobenius")  # noqa

    assert round(n - n0, 7) == 0
    assert round(n - nl, 7) == 0
Exemplo n.º 2
0
# Define forms (dont redefine functions used here)
# step 1
u0 = Function(V)
u1 = Function(V)
p0 = Function(Q)
u_tent = TrialFunction(V)
v = TestFunction(V)
# U_ = 1.5*u0 - 0.5*u1
# nonlinearity = inner(dot(0.5 * (u_tent.dx(0) + u0.dx(0)), U_), v) * dx
# F_tent = (1./dt)*inner(u_tent - u0, v) * dx + nonlinearity\
#     + nu*inner(0.5 * (u_tent.dx(0) + u0.dx(0)), v.dx(0)) * dx + inner(p0.dx(0), v) * dx\
#     - inner(f, v)*dx     # solve to u_
# using explicite scheme: so LHS has interpretation as heat equation, RHS are sources
F_tent = (1./dt)*inner(u_tent - u0, v)*dx + inner(dot(u0.dx(0), u0), v)*dx + nu*inner((u_tent.dx(0) + u0.dx(0)), v.dx(0)) * dx + inner(p0.dx(0), v) * dx\
    - inner(f, v)*dx     # solve to u_
a_tent, L_tent = system(F_tent)
# step 2
u_tent_computed = Function(V)
p = TrialFunction(Q)
q = TestFunction(Q)
F_p = inner(grad(p-p0), grad(q))*dx + (1./dt)*u_tent_computed.dx(0)*q*dx # + 2*p.dx(0)*q*ds(1) # tried to force dp/dn=0 on inflow
# TEST: prescribe Neumann outflow BC
# F_p = inner(grad(p-p0), grad(q))*dx + (1./dt)*u_tent_computed.dx(0)*q*dx + (1./dt)*(v_in_expr-u_tent_computed)*q*ds(2)
a_p, L_p = system(F_p)
A_p = assemble(a_p)
as_backend_type(A_p).set_nullspace(null_space)
print(A_p.array())
# step 2 rotation
# F_p_rot = inner(grad(p), grad(q))*dx + (1./dt)*u_tent_computed.dx(0)*q*dx + (1./dt)*(v_in_expr-u_tent_computed)*q*ds(2)
F_p_rot = inner(grad(p), grad(q))*dx + (1./dt)*u_tent_computed.dx(0)*q*dx
a_p_rot, L_p_rot = system(F_p_rot)
Exemplo n.º 3
0
    def solve(self, problem):
        self.problem = problem
        doSave = problem.doSave
        save_this_step = False
        onlyVel = problem.saveOnlyVel
        dt = self.metadata['dt']

        nu = Constant(self.problem.nu)
        # TODO check proper use of watches
        self.tc.init_watch('init', 'Initialization', True, count_to_percent=False)
        self.tc.init_watch('rhs', 'Assembled right hand side', True, count_to_percent=True)
        self.tc.init_watch('updateBC', 'Updated velocity BC', True, count_to_percent=True)
        self.tc.init_watch('applybc1', 'Applied velocity BC 1st step', True, count_to_percent=True)
        self.tc.init_watch('applybc3', 'Applied velocity BC 3rd step', True, count_to_percent=True)
        self.tc.init_watch('applybcP', 'Applied pressure BC or othogonalized rhs', True, count_to_percent=True)
        self.tc.init_watch('assembleMatrices', 'Initial matrix assembly', False, count_to_percent=True)
        self.tc.init_watch('solve 1', 'Running solver on 1st step', True, count_to_percent=True)
        self.tc.init_watch('solve 2', 'Running solver on 2nd step', True, count_to_percent=True)
        self.tc.init_watch('solve 3', 'Running solver on 3rd step', True, count_to_percent=True)
        self.tc.init_watch('solve 4', 'Running solver on 4th step', True, count_to_percent=True)
        self.tc.init_watch('assembleA1', 'Assembled A1 matrix (without stabiliz.)', True, count_to_percent=True)
        self.tc.init_watch('assembleA1stab', 'Assembled A1 stabilization', True, count_to_percent=True)
        self.tc.init_watch('next', 'Next step assignments', True, count_to_percent=True)
        self.tc.init_watch('saveVel', 'Saved velocity', True)

        self.tc.start('init')

        # Define function spaces (P2-P1)
        mesh = self.problem.mesh
        self.V = VectorFunctionSpace(mesh, "Lagrange", 2)  # velocity
        self.Q = FunctionSpace(mesh, "Lagrange", 1)  # pressure
        self.PS = FunctionSpace(mesh, "Lagrange", 2)  # partial solution (must be same order as V)
        self.D = FunctionSpace(mesh, "Lagrange", 1)   # velocity divergence space
        if self.bc == 'lagrange':
            L = FunctionSpace(mesh, "R", 0)
            QL = self.Q*L

        problem.initialize(self.V, self.Q, self.PS, self.D)

        # Define trial and test functions
        u = TrialFunction(self.V)
        v = TestFunction(self.V)
        if self.bc == 'lagrange':
            (pQL, rQL) = TrialFunction(QL)
            (qQL, lQL) = TestFunction(QL)
        else:
            p = TrialFunction(self.Q)
            q = TestFunction(self.Q)

        n = FacetNormal(mesh)
        I = Identity(u.geometric_dimension())

        # Initial conditions: u0 velocity at previous time step u1 velocity two time steps back p0 previous pressure
        [u1, u0, p0] = self.problem.get_initial_conditions([{'type': 'v', 'time': -dt},
                                                          {'type': 'v', 'time': 0.0},
                                                          {'type': 'p', 'time': 0.0}])

        if doSave:
            problem.save_vel(False, u0, 0.0)
            problem.save_vel(True, u0, 0.0)

        u_ = Function(self.V)         # current tentative velocity
        u_cor = Function(self.V)         # current corrected velocity
        if self.bc == 'lagrange':
            p_QL = Function(QL)    # current pressure or pressure help function from rotation scheme
            pQ = Function(self.Q)     # auxiliary function for conversion between QL.sub(0) and Q
        else:
            p_ = Function(self.Q)         # current pressure or pressure help function from rotation scheme
        p_mod = Function(self.Q)      # current modified pressure from rotation scheme

        # Define coefficients
        k = Constant(self.metadata['dt'])
        f = Constant((0, 0, 0))

        # Define forms
        # step 1: Tentative velocity, solve to u_
        u_ext = 1.5*u0 - 0.5*u1  # extrapolation for convection term

        # Stabilisation
        h = CellSize(mesh)
        # CBC delta:
        if self.cbcDelta:
            delta = Constant(self.stabCoef)*h/(sqrt(inner(u_ext, u_ext))+h)
        else:
            delta = Constant(self.stabCoef)*h**2/(2*nu*k + k*h*inner(u_ext, u_ext)+h**2)

        if self.use_full_SUPG:
            v1 = v + delta*0.5*k*dot(grad(v), u_ext)
            parameters['form_compiler']['quadrature_degree'] = 6
        else:
            v1 = v

        def nonlinearity(function):
            if self.use_ema:
               return 2*inner(dot(sym(grad(function)), u_ext), v1) * dx + inner(div(function)*u_ext, v1) * dx
                # return 2*inner(dot(sym(grad(function)), u_ext), v) * dx + inner(div(u_ext)*function, v) * dx
                # QQ implement this way?
            else:
                return inner(dot(grad(function), u_ext), v1) * dx

        def diffusion(fce):
            if self.useLaplace:
                return nu*inner(grad(fce), grad(v1)) * dx
            else:
                form = inner(nu * 2 * sym(grad(fce)), sym(grad(v1))) * dx
                if self.bcv == 'CDN':
                    # IMP will work only if p=0 on output, or we must add term
                    # inner(p0*n, v)*problem.get_outflow_measure_form() to avoid boundary layer
                    return form
                if self.bcv == 'LAP':
                    return form - inner(nu*dot(grad(fce).T, n), v1)  * problem.get_outflow_measure_form()
                if self.bcv == 'DDN':
                    # IMP will work only if p=0 on output, or we must add term
                    # inner(p0*n, v)*problem.get_outflow_measure_form() to avoid boundary layer
                    return form  # additional term must be added to non-constant part

        def pressure_rhs():
            if self.useLaplace or self.bcv == 'LAP':
                return inner(p0, div(v1)) * dx - inner(p0*n, v1) * problem.get_outflow_measure_form()
                # NT term inner(inner(p, n), v) is 0 when p=0 on outflow
            else:
                return inner(p0, div(v1)) * dx

        a1_const = (1./k)*inner(u, v1)*dx + diffusion(0.5*u)
        a1_change = nonlinearity(0.5*u)
        if self.bcv == 'DDN':
            # IMP Problem: Does not penalize influx for current step, only for the next one
            # IMP this can lead to oscilation: DDN correct next step, but then u_ext is OK so in next step DDN is not used, leading to new influx...
            # u and u_ext cannot be switched, min_value is nonlinear function
            a1_change += -0.5*min_value(Constant(0.), inner(u_ext, n))*inner(u, v1)*problem.get_outflow_measure_form()
            # IMP works only with uflacs compiler

        L1 = (1./k)*inner(u0, v1)*dx - nonlinearity(0.5*u0) - diffusion(0.5*u0) + pressure_rhs()
        if self.bcv == 'DDN':
            L1 += 0.5*min_value(0., inner(u_ext, n))*inner(u0, v1)*problem.get_outflow_measure_form()

        # Non-consistent SUPG stabilisation
        if self.stabilize and not self.use_full_SUPG:
            # a1_stab = delta*inner(dot(grad(u), u_ext), dot(grad(v), u_ext))*dx
            a1_stab = 0.5*delta*inner(dot(grad(u), u_ext), dot(grad(v), u_ext))*dx(None, {'quadrature_degree': 6})
            # NT optional: use Crank Nicolson in stabilisation term: change RHS
            # L1 += -0.5*delta*inner(dot(grad(u0), u_ext), dot(grad(v), u_ext))*dx(None, {'quadrature_degree': 6})

        outflow_area = Constant(problem.outflow_area)
        need_outflow = Constant(0.0)
        if self.useRotationScheme:
            # Rotation scheme
            if self.bc == 'lagrange':
                F2 = inner(grad(pQL), grad(qQL))*dx + (1./k)*qQL*div(u_)*dx + pQL*lQL*dx + qQL*rQL*dx
            else:
                F2 = inner(grad(p), grad(q))*dx + (1./k)*q*div(u_)*dx
        else:
            # Projection, solve to p_
            if self.bc == 'lagrange':
                F2 = inner(grad(pQL - p0), grad(qQL))*dx + (1./k)*qQL*div(u_)*dx + pQL*lQL*dx + qQL*rQL*dx
            else:
                if self.forceOutflow and problem.can_force_outflow:
                    info('Forcing outflow.')
                    F2 = inner(grad(p - p0), grad(q))*dx + (1./k)*q*div(u_)*dx
                    for m in problem.get_outflow_measures():
                        F2 += (1./k)*(1./outflow_area)*need_outflow*q*m
                else:
                    F2 = inner(grad(p - p0), grad(q))*dx + (1./k)*q*div(u_)*dx
        a2, L2 = system(F2)

        # step 3: Finalize, solve to u_
        if self.useRotationScheme:
            # Rotation scheme
            if self.bc == 'lagrange':
                F3 = (1./k)*inner(u - u_, v)*dx + inner(grad(p_QL.sub(0)), v)*dx
            else:
                F3 = (1./k)*inner(u - u_, v)*dx + inner(grad(p_), v)*dx
        else:
            if self.bc == 'lagrange':
                F3 = (1./k)*inner(u - u_, v)*dx + inner(grad(p_QL.sub(0) - p0), v)*dx
            else:
                F3 = (1./k)*inner(u - u_, v)*dx + inner(grad(p_ - p0), v)*dx
        a3, L3 = system(F3)

        if self.useRotationScheme:
            # Rotation scheme: modify pressure
            if self.bc == 'lagrange':
                pr = TrialFunction(self.Q)
                qr = TestFunction(self.Q)
                F4 = (pr - p0 - p_QL.sub(0) + nu*div(u_))*qr*dx
            else:
                F4 = (p - p0 - p_ + nu*div(u_))*q*dx
            # TODO zkusit, jestli to nebude rychlejsi? nepocitat soustavu, ale p.assign(...), nutno project(div(u),Q) coz je pocitani podobne soustavy
            # TODO zkusit v project zadat solver_type='lu' >> primy resic by mel byt efektivnejsi
            a4, L4 = system(F4)

        # Assemble matrices
        self.tc.start('assembleMatrices')
        A1_const = assemble(a1_const)  # need to be here, so A1 stays one Python object during repeated assembly
        A1_change = A1_const.copy()  # copy to get matrix with same sparse structure (data will be overwriten)
        if self.stabilize and not self.use_full_SUPG:
            A1_stab = A1_const.copy()  # copy to get matrix with same sparse structure (data will be overwriten)
        A2 = assemble(a2)
        A3 = assemble(a3)
        if self.useRotationScheme:
            A4 = assemble(a4)
        self.tc.end('assembleMatrices')

        if self.solvers == 'direct':
            self.solver_vel_tent = LUSolver('mumps')
            self.solver_vel_cor = LUSolver('mumps')
            self.solver_p = LUSolver('umfpack')
            if self.useRotationScheme:
                self.solver_rot = LUSolver('umfpack')
        else:
            # NT not needed, chosen not to use hypre_parasails
            # if self.prec_v == 'hypre_parasails':  # in FEniCS 1.6.0 inaccessible using KrylovSolver class
            #     self.solver_vel_tent = PETScKrylovSolver('gmres')   # PETSc4py object
            #     self.solver_vel_tent.ksp().getPC().setType('hypre')
            #     PETScOptions.set('pc_hypre_type', 'parasails')
            #     # this is global setting, but preconditioners for pressure solvers are set by their constructors
            # else:
            self.solver_vel_tent = KrylovSolver('gmres', self.prec_v)   # nonsymetric > gmres
            # IMP cannot use 'ilu' in parallel (choose different default option)
            self.solver_vel_cor = KrylovSolver('cg', 'hypre_amg')   # nonsymetric > gmres
            self.solver_p = KrylovSolver('cg', self.prec_p)          # symmetric > CG
            if self.useRotationScheme:
                self.solver_rot = KrylovSolver('cg', self.prec_p)

        solver_options = {'monitor_convergence': True, 'maximum_iterations': 1000, 'nonzero_initial_guess': True}
        # 'nonzero_initial_guess': True   with  solver.solbe(A, u, b) means that
        # Solver will use anything stored in u as an initial guess

        # Get the nullspace if there are no pressure boundary conditions
        foo = Function(self.Q)     # auxiliary vector for setting pressure nullspace
        if self.bc in ['nullspace', 'nullspace_s']:
            null_vec = Vector(foo.vector())
            self.Q.dofmap().set(null_vec, 1.0)
            null_vec *= 1.0/null_vec.norm('l2')
            self.null_space = VectorSpaceBasis([null_vec])
            if self.bc == 'nullspace':
                as_backend_type(A2).set_nullspace(self.null_space)

        # apply global options for Krylov solvers
        self.solver_vel_tent.parameters['relative_tolerance'] = 10 ** (-self.precision_rel_v_tent)
        self.solver_vel_tent.parameters['absolute_tolerance'] = 10 ** (-self.precision_abs_v_tent)
        self.solver_vel_cor.parameters['relative_tolerance'] = 10E-12
        self.solver_vel_cor.parameters['absolute_tolerance'] = 10E-4
        self.solver_p.parameters['relative_tolerance'] = 10**(-self.precision_p)
        self.solver_p.parameters['absolute_tolerance'] = 10E-10
        if self.useRotationScheme:
            self.solver_rot.parameters['relative_tolerance'] = 10**(-self.precision_p)
            self.solver_rot.parameters['absolute_tolerance'] = 10E-10

        if self.solvers == 'krylov':
            for solver in [self.solver_vel_tent, self.solver_vel_cor, self.solver_p, self.solver_rot] if \
                    self.useRotationScheme else [self.solver_vel_tent, self.solver_vel_cor, self.solver_p]:
                for key, value in solver_options.items():
                    try:
                        solver.parameters[key] = value
                    except KeyError:
                        info('Invalid option %s for KrylovSolver' % key)
                        return 1
                solver.parameters['preconditioner']['structure'] = 'same'
                # matrices A2-A4 do not change, so we can reuse preconditioners

        self.solver_vel_tent.parameters['preconditioner']['structure'] = 'same_nonzero_pattern'
        # matrix A1 changes every time step, so change of preconditioner must be allowed

        if self.bc == 'lagrange':
            fa = FunctionAssigner(self.Q, QL.sub(0))

        # boundary conditions
        bcu, bcp = problem.get_boundary_conditions(self.bc == 'outflow', self.V, self.Q)
        self.tc.end('init')
        # Time-stepping
        info("Running of Incremental pressure correction scheme n. 1")
        ttime = self.metadata['time']
        t = dt
        step = 1
        while t < (ttime + dt/2.0):
            info("t = %f" % t)
            self.problem.update_time(t, step)
            if self.MPI_rank == 0:
                problem.write_status_file(t)

            if doSave:
                save_this_step = problem.save_this_step

            # DDN debug
            # u_ext_in = assemble(inner(u_ext, n)*problem.get_outflow_measure_form())
            # DDN_triggered = assemble(min_value(Constant(0.), inner(u_ext, n))*problem.get_outflow_measure_form())
            # print('DDN: u_ext*n dSout = ', u_ext_in)
            # print('DDN: negative part of u_ext*n dSout = ', DDN_triggered)

            # assemble matrix (it depends on solution)
            self.tc.start('assembleA1')
            assemble(a1_change, tensor=A1_change)  # assembling into existing matrix is faster than assembling new one
            A1 = A1_const.copy()  # we dont want to change A1_const
            A1.axpy(1, A1_change, True)
            self.tc.end('assembleA1')
            self.tc.start('assembleA1stab')
            if self.stabilize and not self.use_full_SUPG:
                assemble(a1_stab, tensor=A1_stab)  # assembling into existing matrix is faster than assembling new one
                A1.axpy(1, A1_stab, True)
            self.tc.end('assembleA1stab')

            # Compute tentative velocity step
            begin("Computing tentative velocity")
            self.tc.start('rhs')
            b = assemble(L1)
            self.tc.end('rhs')
            self.tc.start('applybc1')
            [bc.apply(A1, b) for bc in bcu]
            self.tc.end('applybc1')
            try:
                self.tc.start('solve 1')
                self.solver_vel_tent.solve(A1, u_.vector(), b)
                self.tc.end('solve 1')
                if save_this_step:
                    self.tc.start('saveVel')
                    problem.save_vel(True, u_, t)
                    self.tc.end('saveVel')
                if save_this_step and not onlyVel:
                    problem.save_div(True, u_)
                problem.compute_err(True, u_, t)
                problem.compute_div(True, u_)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            end()

            # DDN debug
            # u_ext_in = assemble(inner(u_, n)*problem.get_outflow_measure_form())
            # DDN_triggered = assemble(min_value(Constant(0.), inner(u_, n))*problem.get_outflow_measure_form())
            # print('DDN: u_tent*n dSout = ', u_ext_in)
            # print('DDN: negative part of u_tent*n dSout = ', DDN_triggered)

            if self.useRotationScheme:
                begin("Computing tentative pressure")
            else:
                begin("Computing pressure")
            if self.forceOutflow and problem.can_force_outflow:
                out = problem.compute_outflow(u_)
                info('Tentative outflow: %f' % out)
                n_o = -problem.last_inflow-out
                info('Needed outflow: %f' % n_o)
                need_outflow.assign(n_o)
            self.tc.start('rhs')
            b = assemble(L2)
            self.tc.end('rhs')
            self.tc.start('applybcP')
            [bc.apply(A2, b) for bc in bcp]
            if self.bc in ['nullspace', 'nullspace_s']:
                self.null_space.orthogonalize(b)
            self.tc.end('applybcP')
            try:
                self.tc.start('solve 2')
                if self.bc == 'lagrange':
                    self.solver_p.solve(A2, p_QL.vector(), b)
                else:
                    self.solver_p.solve(A2, p_.vector(), b)
                self.tc.end('solve 2')
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if self.useRotationScheme:
                foo = Function(self.Q)
                if self.bc == 'lagrange':
                    fa.assign(pQ, p_QL.sub(0))
                    foo.assign(pQ + p0)
                else:
                    foo.assign(p_+p0)
                problem.averaging_pressure(foo)
                if save_this_step and not onlyVel:
                    problem.save_pressure(True, foo)
            else:
                if self.bc == 'lagrange':
                    fa.assign(pQ, p_QL.sub(0))
                    problem.averaging_pressure(pQ)
                    if save_this_step and not onlyVel:
                        problem.save_pressure(False, pQ)
                else:
                    # we do not want to change p=0 on outflow, it conflicts with do-nothing conditions
                    foo = Function(self.Q)
                    foo.assign(p_)
                    problem.averaging_pressure(foo)
                    if save_this_step and not onlyVel:
                        problem.save_pressure(False, foo)
            end()

            begin("Computing corrected velocity")
            self.tc.start('rhs')
            b = assemble(L3)
            self.tc.end('rhs')
            if not self.B:
                self.tc.start('applybc3')
                [bc.apply(A3, b) for bc in bcu]
                self.tc.end('applybc3')
            try:
                self.tc.start('solve 3')
                self.solver_vel_cor.solve(A3, u_cor.vector(), b)
                self.tc.end('solve 3')
                problem.compute_err(False, u_cor, t)
                problem.compute_div(False, u_cor)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if save_this_step:
                self.tc.start('saveVel')
                problem.save_vel(False, u_cor, t)
                self.tc.end('saveVel')
            if save_this_step and not onlyVel:
                problem.save_div(False, u_cor)
            end()

            # DDN debug
            # u_ext_in = assemble(inner(u_cor, n)*problem.get_outflow_measure_form())
            # DDN_triggered = assemble(min_value(Constant(0.), inner(u_cor, n))*problem.get_outflow_measure_form())
            # print('DDN: u_cor*n dSout = ', u_ext_in)
            # print('DDN: negative part of u_cor*n dSout = ', DDN_triggered)

            if self.useRotationScheme:
                begin("Rotation scheme pressure correction")
                self.tc.start('rhs')
                b = assemble(L4)
                self.tc.end('rhs')
                try:
                    self.tc.start('solve 4')
                    self.solver_rot.solve(A4, p_mod.vector(), b)
                    self.tc.end('solve 4')
                except RuntimeError as inst:
                    problem.report_fail(t)
                    return 1
                problem.averaging_pressure(p_mod)
                if save_this_step and not onlyVel:
                    problem.save_pressure(False, p_mod)
                end()

            # compute functionals (e. g. forces)
            problem.compute_functionals(u_cor,
                                        p_mod if self.useRotationScheme else (pQ if self.bc == 'lagrange' else p_), t)

            # Move to next time step
            self.tc.start('next')
            u1.assign(u0)
            u0.assign(u_cor)
            u_.assign(u_cor)  # use corretced velocity as initial guess in first step

            if self.useRotationScheme:
                p0.assign(p_mod)
            else:
                if self.bc == 'lagrange':
                    p0.assign(pQ)
                else:
                    p0.assign(p_)

            t = round(t + dt, 6)  # round time step to 0.000001
            step += 1
            self.tc.end('next')

        info("Finished: Incremental pressure correction scheme n. 1")
        problem.report()
        return 0
Exemplo n.º 4
0
    def solve(self, problem):
        self.problem = problem
        doSave = problem.doSave
        save_this_step = False
        onlyVel = problem.saveOnlyVel
        dt = self.metadata['dt']

        nu = Constant(self.problem.nu)
        self.tc.init_watch('init',
                           'Initialization',
                           True,
                           count_to_percent=False)
        self.tc.init_watch('rhs',
                           'Assembled right hand side',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('applybc1',
                           'Applied velocity BC 1st step',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('applybc3',
                           'Applied velocity BC 3rd step',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('applybcP',
                           'Applied pressure BC or othogonalized rhs',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('assembleMatrices',
                           'Initial matrix assembly',
                           False,
                           count_to_percent=True)
        self.tc.init_watch('solve 1',
                           'Running solver on 1st step',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('solve 2',
                           'Running solver on 2nd step',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('solve 3',
                           'Running solver on 3rd step',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('solve 4',
                           'Running solver on 4th step',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('assembleA1',
                           'Assembled A1 matrix (without stabiliz.)',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('assembleA1stab',
                           'Assembled A1 stabilization',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('next',
                           'Next step assignments',
                           True,
                           count_to_percent=True)
        self.tc.init_watch('saveVel', 'Saved velocity', True)

        self.tc.start('init')

        # Define function spaces (P2-P1)
        mesh = self.problem.mesh
        self.V = VectorFunctionSpace(mesh, "Lagrange", 2)  # velocity
        self.Q = FunctionSpace(mesh, "Lagrange", 1)  # pressure
        self.PS = FunctionSpace(
            mesh, "Lagrange", 2)  # partial solution (must be same order as V)
        self.D = FunctionSpace(mesh, "Lagrange",
                               1)  # velocity divergence space

        problem.initialize(self.V, self.Q, self.PS, self.D)

        # Define trial and test functions
        u = TrialFunction(self.V)
        v = TestFunction(self.V)
        p = TrialFunction(self.Q)
        q = TestFunction(self.Q)

        n = FacetNormal(mesh)
        I = Identity(find_geometric_dimension(u))

        # Initial conditions: u0 velocity at previous time step u1 velocity two time steps back p0 previous pressure
        [u1, u0, p0] = self.problem.get_initial_conditions([{
            'type': 'v',
            'time': -dt
        }, {
            'type': 'v',
            'time': 0.0
        }, {
            'type': 'p',
            'time': 0.0
        }])

        u_ = Function(self.V)  # current tentative velocity
        u_cor = Function(self.V)  # current corrected velocity
        p_ = Function(
            self.Q
        )  # current pressure or pressure help function from rotation scheme
        p_mod = Function(
            self.Q)  # current modified pressure from rotation scheme

        # Define coefficients
        k = Constant(self.metadata['dt'])
        f = Constant((0, 0, 0))

        # Define forms
        # step 1: Tentative velocity, solve to u_
        u_ext = 1.5 * u0 - 0.5 * u1  # extrapolation for convection term

        # Stabilisation
        h = CellSize(mesh)
        if self.args.cbc_tau:
            # used in Simula cbcflow project
            tau = Constant(self.stabCoef) * h / (sqrt(inner(u_ext, u_ext)) + h)
        else:
            # proposed in R. Codina: On stabilized finite element methods for linear systems of
            # convection-diffusion-reaction equations.
            tau = Constant(self.stabCoef) * k * h**2 / (
                2 * nu * k + k * h * sqrt(DOLFIN_EPS + inner(u_ext, u_ext)) +
                h**2)
            # DOLFIN_EPS is added because of FEniCS bug that inner(u_ext, u_ext) can be negative when u_ext = 0

        if self.use_full_SUPG:
            v1 = v + tau * 0.5 * dot(grad(v), u_ext)
            parameters['form_compiler']['quadrature_degree'] = 6
        else:
            v1 = v

        def nonlinearity(function):
            if self.args.ema:
                return 2 * inner(dot(sym(grad(function)), u_ext), v1
                                 ) * dx + inner(div(function) * u_ext, v1) * dx
            else:
                return inner(dot(grad(function), u_ext), v1) * dx

        def diffusion(fce):
            if self.useLaplace:
                return nu * inner(grad(fce), grad(v1)) * dx
            else:
                form = inner(nu * 2 * sym(grad(fce)), sym(grad(v1))) * dx
                if self.bcv == 'CDN':
                    return form
                if self.bcv == 'LAP':
                    return form - inner(nu * dot(grad(fce).T, n), v1
                                        ) * problem.get_outflow_measure_form()
                if self.bcv == 'DDN':
                    return form  # additional term must be added to non-constant part

        def pressure_rhs():
            if self.args.bc == 'outflow':
                return inner(p0, div(v1)) * dx
            else:
                return inner(p0, div(v1)) * dx - inner(
                    p0 * n, v1) * problem.get_outflow_measure_form()

        a1_const = (1. / k) * inner(u, v1) * dx + diffusion(0.5 * u)
        a1_change = nonlinearity(0.5 * u)
        if self.bcv == 'DDN':
            # does not penalize influx for current step, only for the next one
            # this can lead to oscilation:
            # DDN correct next step, but then u_ext is OK so in next step DDN is not used, leading to new influx...
            # u and u_ext cannot be switched, min_value is nonlinear function
            a1_change += -0.5 * min_value(Constant(0.), inner(
                u_ext, n)) * inner(u, v1) * problem.get_outflow_measure_form()
            # NT works only with uflacs compiler

        L1 = (1. / k) * inner(u0, v1) * dx - nonlinearity(
            0.5 * u0) - diffusion(0.5 * u0) + pressure_rhs()
        if self.bcv == 'DDN':
            L1 += 0.5 * min_value(0., inner(u_ext, n)) * inner(
                u0, v1) * problem.get_outflow_measure_form()

        # Non-consistent SUPG stabilisation
        if self.stabilize and not self.use_full_SUPG:
            # a1_stab = tau*inner(dot(grad(u), u_ext), dot(grad(v), u_ext))*dx
            a1_stab = 0.5 * tau * inner(dot(grad(u), u_ext), dot(
                grad(v), u_ext)) * dx(None, {'quadrature_degree': 6})
            # optional: to use Crank Nicolson in stabilisation term following change of RHS is needed:
            # L1 += -0.5*tau*inner(dot(grad(u0), u_ext), dot(grad(v), u_ext))*dx(None, {'quadrature_degree': 6})

        outflow_area = Constant(problem.outflow_area)
        need_outflow = Constant(0.0)
        if self.useRotationScheme:
            # Rotation scheme
            F2 = inner(grad(p), grad(q)) * dx + (1. / k) * q * div(u_) * dx
        else:
            # Projection, solve to p_
            if self.forceOutflow and problem.can_force_outflow:
                info('Forcing outflow.')
                F2 = inner(grad(p - p0),
                           grad(q)) * dx + (1. / k) * q * div(u_) * dx
                for m in problem.get_outflow_measures():
                    F2 += (1. / k) * (1. / outflow_area) * need_outflow * q * m
            else:
                F2 = inner(grad(p - p0),
                           grad(q)) * dx + (1. / k) * q * div(u_) * dx
        a2, L2 = system(F2)

        # step 3: Finalize, solve to u_
        if self.useRotationScheme:
            # Rotation scheme
            F3 = (1. / k) * inner(u - u_, v) * dx + inner(grad(p_), v) * dx
        else:
            F3 = (1. / k) * inner(u - u_, v) * dx + inner(grad(p_ - p0),
                                                          v) * dx
        a3, L3 = system(F3)

        if self.useRotationScheme:
            # Rotation scheme: modify pressure
            F4 = (p - p0 - p_ + nu * div(u_)) * q * dx
            a4, L4 = system(F4)

        # Assemble matrices
        self.tc.start('assembleMatrices')
        A1_const = assemble(
            a1_const
        )  # must be here, so A1 stays one Python object during repeated assembly
        A1_change = A1_const.copy(
        )  # copy to get matrix with same sparse structure (data will be overwritten)
        if self.stabilize and not self.use_full_SUPG:
            A1_stab = A1_const.copy(
            )  # copy to get matrix with same sparse structure (data will be overwritten)
        A2 = assemble(a2)
        A3 = assemble(a3)
        if self.useRotationScheme:
            A4 = assemble(a4)
        self.tc.end('assembleMatrices')

        if self.solvers == 'direct':
            self.solver_vel_tent = LUSolver('mumps')
            self.solver_vel_cor = LUSolver('mumps')
            self.solver_p = LUSolver('mumps')
            if self.useRotationScheme:
                self.solver_rot = LUSolver('mumps')
        else:
            # NT 2016-1  KrylovSolver >> PETScKrylovSolver

            # not needed, chosen not to use hypre_parasails:
            # if self.prec_v == 'hypre_parasails':  # in FEniCS 1.6.0 inaccessible using KrylovSolver class
            #     self.solver_vel_tent = PETScKrylovSolver('gmres')   # PETSc4py object
            #     self.solver_vel_tent.ksp().getPC().setType('hypre')
            #     PETScOptions.set('pc_hypre_type', 'parasails')
            #     # this is global setting, but preconditioners for pressure solvers are set by their constructors
            # else:
            self.solver_vel_tent = PETScKrylovSolver(
                'gmres', self.args.precV)  # nonsymetric > gmres
            # cannot use 'ilu' in parallel
            self.solver_vel_cor = PETScKrylovSolver('cg', self.args.precVC)
            self.solver_p = PETScKrylovSolver(
                self.args.solP,
                self.args.precP)  # almost (up to BC) symmetric > CG
            if self.useRotationScheme:
                self.solver_rot = PETScKrylovSolver('cg', 'hypre_amg')

        # setup Krylov solvers
        if self.solvers == 'krylov':
            # Get the nullspace if there are no pressure boundary conditions
            foo = Function(
                self.Q)  # auxiliary vector for setting pressure nullspace
            if self.args.bc == 'nullspace':
                null_vec = Vector(foo.vector())
                self.Q.dofmap().set(null_vec, 1.0)
                null_vec *= 1.0 / null_vec.norm('l2')
                self.null_space = VectorSpaceBasis([null_vec])
                as_backend_type(A2).set_nullspace(self.null_space)

            # apply global options for Krylov solvers
            solver_options = {
                'monitor_convergence': True,
                'maximum_iterations': 10000,
                'nonzero_initial_guess': True
            }
            # 'nonzero_initial_guess': True   with  solver.solve(A, u, b) means that
            # Solver will use anything stored in u as an initial guess
            for solver in [self.solver_vel_tent, self.solver_vel_cor, self.solver_rot, self.solver_p] if \
                    self.useRotationScheme else [self.solver_vel_tent, self.solver_vel_cor, self.solver_p]:
                for key, value in solver_options.items():
                    try:
                        solver.parameters[key] = value
                    except KeyError:
                        info('Invalid option %s for KrylovSolver' % key)
                        return 1

            if self.args.solP == 'richardson':
                self.solver_p.parameters['monitor_convergence'] = False

            self.solver_vel_tent.parameters['relative_tolerance'] = 10**(
                -self.args.prv1)
            self.solver_vel_tent.parameters['absolute_tolerance'] = 10**(
                -self.args.pav1)
            self.solver_vel_cor.parameters['relative_tolerance'] = 10E-12
            self.solver_vel_cor.parameters['absolute_tolerance'] = 10E-4
            self.solver_p.parameters['relative_tolerance'] = 10**(
                -self.args.prp)
            self.solver_p.parameters['absolute_tolerance'] = 10**(
                -self.args.pap)
            if self.useRotationScheme:
                self.solver_rot.parameters['relative_tolerance'] = 10E-10
                self.solver_rot.parameters['absolute_tolerance'] = 10E-10

            if self.args.Vrestart > 0:
                self.solver_vel_tent.parameters['gmres'][
                    'restart'] = self.args.Vrestart

            if self.args.solP == 'gmres' and self.args.Prestart > 0:
                self.solver_p.parameters['gmres'][
                    'restart'] = self.args.Prestart

        # boundary conditions
        bcu, bcp = problem.get_boundary_conditions(self.args.bc == 'outflow',
                                                   self.V, self.Q)
        self.tc.end('init')
        # Time-stepping
        info("Running of Incremental pressure correction scheme n. 1")
        ttime = self.metadata['time']
        t = dt
        step = 1

        # debug function
        if problem.args.debug_rot:
            plot_cor_v = Function(self.V)

        while t < (ttime + dt / 2.0):
            self.problem.update_time(t, step)
            if self.MPI_rank == 0:
                problem.write_status_file(t)

            if doSave:
                save_this_step = problem.save_this_step

            # assemble matrix (it depends on solution)
            self.tc.start('assembleA1')
            assemble(
                a1_change, tensor=A1_change
            )  # assembling into existing matrix is faster than assembling new one
            A1 = A1_const.copy()  # we dont want to change A1_const
            A1.axpy(1, A1_change, True)
            self.tc.end('assembleA1')
            self.tc.start('assembleA1stab')
            if self.stabilize and not self.use_full_SUPG:
                assemble(
                    a1_stab, tensor=A1_stab
                )  # assembling into existing matrix is faster than assembling new one
                A1.axpy(1, A1_stab, True)
            self.tc.end('assembleA1stab')

            # Compute tentative velocity step
            begin("Computing tentative velocity")
            self.tc.start('rhs')
            b = assemble(L1)
            self.tc.end('rhs')
            self.tc.start('applybc1')
            [bc.apply(A1, b) for bc in bcu]
            self.tc.end('applybc1')
            try:
                self.tc.start('solve 1')
                self.solver_vel_tent.solve(A1, u_.vector(), b)
                self.tc.end('solve 1')
                if save_this_step:
                    self.tc.start('saveVel')
                    problem.save_vel(True, u_)
                    self.tc.end('saveVel')
                if save_this_step and not onlyVel:
                    problem.save_div(True, u_)
                problem.compute_err(True, u_, t)
                problem.compute_div(True, u_)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            end()

            if self.useRotationScheme:
                begin("Computing tentative pressure")
            else:
                begin("Computing pressure")
            if self.forceOutflow and problem.can_force_outflow:
                out = problem.compute_outflow(u_)
                info('Tentative outflow: %f' % out)
                n_o = -problem.last_inflow - out
                info('Needed outflow: %f' % n_o)
                need_outflow.assign(n_o)
            self.tc.start('rhs')
            b = assemble(L2)
            self.tc.end('rhs')
            self.tc.start('applybcP')
            [bc.apply(A2, b) for bc in bcp]
            if self.args.bc == 'nullspace':
                self.null_space.orthogonalize(b)
            self.tc.end('applybcP')
            try:
                self.tc.start('solve 2')
                self.solver_p.solve(A2, p_.vector(), b)
                self.tc.end('solve 2')
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if self.useRotationScheme:
                foo = Function(self.Q)
                foo.assign(p_ + p0)
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(foo)
                    problem.save_pressure(True, foo)
            else:
                foo = Function(self.Q)
                foo.assign(p_)  # we do not want to change p_ by averaging
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(foo)
                    problem.save_pressure(False, foo)
            end()

            begin("Computing corrected velocity")
            self.tc.start('rhs')
            b = assemble(L3)
            self.tc.end('rhs')
            if not self.args.B:
                self.tc.start('applybc3')
                [bc.apply(A3, b) for bc in bcu]
                self.tc.end('applybc3')
            try:
                self.tc.start('solve 3')
                self.solver_vel_cor.solve(A3, u_cor.vector(), b)
                self.tc.end('solve 3')
                problem.compute_err(False, u_cor, t)
                problem.compute_div(False, u_cor)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if save_this_step:
                self.tc.start('saveVel')
                problem.save_vel(False, u_cor)
                self.tc.end('saveVel')
            if save_this_step and not onlyVel:
                problem.save_div(False, u_cor)
            end()

            if self.useRotationScheme:
                begin("Rotation scheme pressure correction")
                self.tc.start('rhs')
                b = assemble(L4)
                self.tc.end('rhs')
                try:
                    self.tc.start('solve 4')
                    self.solver_rot.solve(A4, p_mod.vector(), b)
                    self.tc.end('solve 4')
                except RuntimeError as inst:
                    problem.report_fail(t)
                    return 1
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(p_mod)
                    problem.save_pressure(False, p_mod)
                end()

                if problem.args.debug_rot:
                    # save applied pressure correction (expressed as a term added to RHS of next tentative vel. step)
                    # see comment next to argument definition
                    plot_cor_v.assign(project(k * grad(nu * div(u_)), self.V))
                    problem.fileDict['grad_cor']['file'].write(plot_cor_v, t)

            # compute functionals (e. g. forces)
            problem.compute_functionals(
                u_cor, p_mod if self.useRotationScheme else p_, t, step)

            # Move to next time step
            self.tc.start('next')
            u1.assign(u0)
            u0.assign(u_cor)
            u_.assign(
                u_cor)  # use corrected velocity as initial guess in first step

            if self.useRotationScheme:
                p0.assign(p_mod)
            else:
                p0.assign(p_)

            t = round(t + dt, 6)  # round time step to 0.000001
            step += 1
            self.tc.end('next')

        info("Finished: Incremental pressure correction scheme n. 1")
        problem.report()
        return 0
Exemplo n.º 5
0
    def solve(self, problem):
        self.problem = problem
        doSave = problem.doSave
        save_this_step = False
        onlyVel = problem.saveOnlyVel
        dt = self.metadata['dt']

        nu = Constant(self.problem.nu)
        self.tc.init_watch('init', 'Initialization', True, count_to_percent=False)
        self.tc.init_watch('rhs', 'Assembled right hand side', True, count_to_percent=True)
        self.tc.init_watch('applybc1', 'Applied velocity BC 1st step', True, count_to_percent=True)
        self.tc.init_watch('applybc3', 'Applied velocity BC 3rd step', True, count_to_percent=True)
        self.tc.init_watch('applybcP', 'Applied pressure BC or othogonalized rhs', True, count_to_percent=True)
        self.tc.init_watch('assembleMatrices', 'Initial matrix assembly', False, count_to_percent=True)
        self.tc.init_watch('solve 1', 'Running solver on 1st step', True, count_to_percent=True)
        self.tc.init_watch('solve 2', 'Running solver on 2nd step', True, count_to_percent=True)
        self.tc.init_watch('solve 3', 'Running solver on 3rd step', True, count_to_percent=True)
        self.tc.init_watch('solve 4', 'Running solver on 4th step', True, count_to_percent=True)
        self.tc.init_watch('assembleA1', 'Assembled A1 matrix (without stabiliz.)', True, count_to_percent=True)
        self.tc.init_watch('assembleA1stab', 'Assembled A1 stabilization', True, count_to_percent=True)
        self.tc.init_watch('next', 'Next step assignments', True, count_to_percent=True)
        self.tc.init_watch('saveVel', 'Saved velocity', True)

        self.tc.start('init')

        # Define function spaces (P2-P1)
        mesh = self.problem.mesh
        self.V = VectorFunctionSpace(mesh, "Lagrange", 2)  # velocity
        self.Q = FunctionSpace(mesh, "Lagrange", 1)  # pressure
        self.PS = FunctionSpace(mesh, "Lagrange", 2)  # partial solution (must be same order as V)
        self.D = FunctionSpace(mesh, "Lagrange", 1)  # velocity divergence space

        problem.initialize(self.V, self.Q, self.PS, self.D)

        # Define trial and test functions
        u = TrialFunction(self.V)
        v = TestFunction(self.V)
        p = TrialFunction(self.Q)
        q = TestFunction(self.Q)

        n = FacetNormal(mesh)
        I = Identity(find_geometric_dimension(u))

        # Initial conditions: u0 velocity at previous time step u1 velocity two time steps back p0 previous pressure
        [u1, u0, p0] = self.problem.get_initial_conditions([{'type': 'v', 'time': -dt},
                                                            {'type': 'v', 'time': 0.0},
                                                            {'type': 'p', 'time': 0.0}])

        u_ = Function(self.V)  # current tentative velocity
        u_cor = Function(self.V)  # current corrected velocity
        p_ = Function(self.Q)  # current pressure or pressure help function from rotation scheme
        p_mod = Function(self.Q)  # current modified pressure from rotation scheme

        # Define coefficients
        k = Constant(self.metadata['dt'])
        f = Constant((0, 0, 0))

        # Define forms
        # step 1: Tentative velocity, solve to u_
        u_ext = 1.5 * u0 - 0.5 * u1  # extrapolation for convection term

        # Stabilisation
        h = CellSize(mesh)
        if self.args.cbc_tau:
            # used in Simula cbcflow project
            tau = Constant(self.stabCoef) * h / (sqrt(inner(u_ext, u_ext)) + h)
        else:
            # proposed in R. Codina: On stabilized finite element methods for linear systems of
            # convection-diffusion-reaction equations.
            tau = Constant(self.stabCoef) * k * h ** 2 / (
            2 * nu * k + k * h * sqrt(DOLFIN_EPS + inner(u_ext, u_ext)) + h ** 2)
            # DOLFIN_EPS is added because of FEniCS bug that inner(u_ext, u_ext) can be negative when u_ext = 0

        if self.use_full_SUPG:
            v1 = v + tau * 0.5 * dot(grad(v), u_ext)
            parameters['form_compiler']['quadrature_degree'] = 6
        else:
            v1 = v

        def nonlinearity(function):
            if self.args.ema:
                return 2 * inner(dot(sym(grad(function)), u_ext), v1) * dx + inner(div(function) * u_ext, v1) * dx
            else:
                return inner(dot(grad(function), u_ext), v1) * dx

        def diffusion(fce):
            if self.useLaplace:
                return nu * inner(grad(fce), grad(v1)) * dx
            else:
                form = inner(nu * 2 * sym(grad(fce)), sym(grad(v1))) * dx
                if self.bcv == 'CDN':
                    return form
                if self.bcv == 'LAP':
                    return form - inner(nu * dot(grad(fce).T, n), v1) * problem.get_outflow_measure_form()
                if self.bcv == 'DDN':
                    return form  # additional term must be added to non-constant part

        def pressure_rhs():
            if self.args.bc == 'outflow':
                return inner(p0, div(v1)) * dx
            else:
                return inner(p0, div(v1)) * dx - inner(p0 * n, v1) * problem.get_outflow_measure_form()

        a1_const = (1. / k) * inner(u, v1) * dx + diffusion(0.5 * u)
        a1_change = nonlinearity(0.5 * u)
        if self.bcv == 'DDN':
            # does not penalize influx for current step, only for the next one
            # this can lead to oscilation:
            # DDN correct next step, but then u_ext is OK so in next step DDN is not used, leading to new influx...
            # u and u_ext cannot be switched, min_value is nonlinear function
            a1_change += -0.5 * min_value(Constant(0.), inner(u_ext, n)) * inner(u,
                                                                                 v1) * problem.get_outflow_measure_form()
            # NT works only with uflacs compiler

        L1 = (1. / k) * inner(u0, v1) * dx - nonlinearity(0.5 * u0) - diffusion(0.5 * u0) + pressure_rhs()
        if self.bcv == 'DDN':
            L1 += 0.5 * min_value(0., inner(u_ext, n)) * inner(u0, v1) * problem.get_outflow_measure_form()

        # Non-consistent SUPG stabilisation
        if self.stabilize and not self.use_full_SUPG:
            # a1_stab = tau*inner(dot(grad(u), u_ext), dot(grad(v), u_ext))*dx
            a1_stab = 0.5 * tau * inner(dot(grad(u), u_ext), dot(grad(v), u_ext)) * dx(None, {'quadrature_degree': 6})
            # optional: to use Crank Nicolson in stabilisation term following change of RHS is needed:
            # L1 += -0.5*tau*inner(dot(grad(u0), u_ext), dot(grad(v), u_ext))*dx(None, {'quadrature_degree': 6})

        outflow_area = Constant(problem.outflow_area)
        need_outflow = Constant(0.0)
        if self.useRotationScheme:
            # Rotation scheme
            F2 = inner(grad(p), grad(q)) * dx + (1. / k) * q * div(u_) * dx
        else:
            # Projection, solve to p_
            if self.forceOutflow and problem.can_force_outflow:
                info('Forcing outflow.')
                F2 = inner(grad(p - p0), grad(q)) * dx + (1. / k) * q * div(u_) * dx
                for m in problem.get_outflow_measures():
                    F2 += (1. / k) * (1. / outflow_area) * need_outflow * q * m
            else:
                F2 = inner(grad(p - p0), grad(q)) * dx + (1. / k) * q * div(u_) * dx
        a2, L2 = system(F2)

        # step 3: Finalize, solve to u_
        if self.useRotationScheme:
            # Rotation scheme
            F3 = (1. / k) * inner(u - u_, v) * dx + inner(grad(p_), v) * dx
        else:
            F3 = (1. / k) * inner(u - u_, v) * dx + inner(grad(p_ - p0), v) * dx
        a3, L3 = system(F3)

        if self.useRotationScheme:
            # Rotation scheme: modify pressure
            F4 = (p - p0 - p_ + nu * div(u_)) * q * dx
            a4, L4 = system(F4)

        # Assemble matrices
        self.tc.start('assembleMatrices')
        A1_const = assemble(a1_const)  # must be here, so A1 stays one Python object during repeated assembly
        A1_change = A1_const.copy()  # copy to get matrix with same sparse structure (data will be overwritten)
        if self.stabilize and not self.use_full_SUPG:
            A1_stab = A1_const.copy()  # copy to get matrix with same sparse structure (data will be overwritten)
        A2 = assemble(a2)
        A3 = assemble(a3)
        if self.useRotationScheme:
            A4 = assemble(a4)
        self.tc.end('assembleMatrices')

        if self.solvers == 'direct':
            self.solver_vel_tent = LUSolver('mumps')
            self.solver_vel_cor = LUSolver('mumps')
            self.solver_p = LUSolver('mumps')
            if self.useRotationScheme:
                self.solver_rot = LUSolver('mumps')
        else:
            # NT 2016-1  KrylovSolver >> PETScKrylovSolver

            # not needed, chosen not to use hypre_parasails:
            # if self.prec_v == 'hypre_parasails':  # in FEniCS 1.6.0 inaccessible using KrylovSolver class
            #     self.solver_vel_tent = PETScKrylovSolver('gmres')   # PETSc4py object
            #     self.solver_vel_tent.ksp().getPC().setType('hypre')
            #     PETScOptions.set('pc_hypre_type', 'parasails')
            #     # this is global setting, but preconditioners for pressure solvers are set by their constructors
            # else:
            self.solver_vel_tent = PETScKrylovSolver('gmres', self.args.precV)  # nonsymetric > gmres
            # cannot use 'ilu' in parallel
            self.solver_vel_cor = PETScKrylovSolver('cg', self.args.precVC)
            self.solver_p = PETScKrylovSolver(self.args.solP, self.args.precP)  # almost (up to BC) symmetric > CG
            if self.useRotationScheme:
                self.solver_rot = PETScKrylovSolver('cg', 'hypre_amg')

        # setup Krylov solvers
        if self.solvers == 'krylov':
            # Get the nullspace if there are no pressure boundary conditions
            foo = Function(self.Q)  # auxiliary vector for setting pressure nullspace
            if self.args.bc == 'nullspace':
                null_vec = Vector(foo.vector())
                self.Q.dofmap().set(null_vec, 1.0)
                null_vec *= 1.0 / null_vec.norm('l2')
                self.null_space = VectorSpaceBasis([null_vec])
                as_backend_type(A2).set_nullspace(self.null_space)

            # apply global options for Krylov solvers
            solver_options = {'monitor_convergence': True, 'maximum_iterations': 10000, 'nonzero_initial_guess': True}
            # 'nonzero_initial_guess': True   with  solver.solve(A, u, b) means that
            # Solver will use anything stored in u as an initial guess
            for solver in [self.solver_vel_tent, self.solver_vel_cor, self.solver_rot, self.solver_p] if \
                    self.useRotationScheme else [self.solver_vel_tent, self.solver_vel_cor, self.solver_p]:
                for key, value in solver_options.items():
                    try:
                        solver.parameters[key] = value
                    except KeyError:
                        info('Invalid option %s for KrylovSolver' % key)
                        return 1

            if self.args.solP == 'richardson':
                self.solver_p.parameters['monitor_convergence'] = False

            self.solver_vel_tent.parameters['relative_tolerance'] = 10 ** (-self.args.prv1)
            self.solver_vel_tent.parameters['absolute_tolerance'] = 10 ** (-self.args.pav1)
            self.solver_vel_cor.parameters['relative_tolerance'] = 10E-12
            self.solver_vel_cor.parameters['absolute_tolerance'] = 10E-4
            self.solver_p.parameters['relative_tolerance'] = 10 ** (-self.args.prp)
            self.solver_p.parameters['absolute_tolerance'] = 10 ** (-self.args.pap)
            if self.useRotationScheme:
                self.solver_rot.parameters['relative_tolerance'] = 10E-10
                self.solver_rot.parameters['absolute_tolerance'] = 10E-10

            if self.args.Vrestart > 0:
                self.solver_vel_tent.parameters['gmres']['restart'] = self.args.Vrestart

            if self.args.solP == 'gmres' and self.args.Prestart > 0:
                self.solver_p.parameters['gmres']['restart'] = self.args.Prestart

        # boundary conditions
        bcu, bcp = problem.get_boundary_conditions(self.args.bc == 'outflow', self.V, self.Q)
        self.tc.end('init')
        # Time-stepping
        info("Running of Incremental pressure correction scheme n. 1")
        ttime = self.metadata['time']
        t = dt
        step = 1

        # debug function
        if problem.args.debug_rot:
            plot_cor_v = Function(self.V)

        while t < (ttime + dt / 2.0):
            self.problem.update_time(t, step)
            if self.MPI_rank == 0:
                problem.write_status_file(t)

            if doSave:
                save_this_step = problem.save_this_step

            # assemble matrix (it depends on solution)
            self.tc.start('assembleA1')
            assemble(a1_change, tensor=A1_change)  # assembling into existing matrix is faster than assembling new one
            A1 = A1_const.copy()  # we dont want to change A1_const
            A1.axpy(1, A1_change, True)
            self.tc.end('assembleA1')
            self.tc.start('assembleA1stab')
            if self.stabilize and not self.use_full_SUPG:
                assemble(a1_stab, tensor=A1_stab)  # assembling into existing matrix is faster than assembling new one
                A1.axpy(1, A1_stab, True)
            self.tc.end('assembleA1stab')

            # Compute tentative velocity step
            begin("Computing tentative velocity")
            self.tc.start('rhs')
            b = assemble(L1)
            self.tc.end('rhs')
            self.tc.start('applybc1')
            [bc.apply(A1, b) for bc in bcu]
            self.tc.end('applybc1')
            try:
                self.tc.start('solve 1')
                self.solver_vel_tent.solve(A1, u_.vector(), b)
                self.tc.end('solve 1')
                if save_this_step:
                    self.tc.start('saveVel')
                    problem.save_vel(True, u_)
                    self.tc.end('saveVel')
                if save_this_step and not onlyVel:
                    problem.save_div(True, u_)
                problem.compute_err(True, u_, t)
                problem.compute_div(True, u_)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            end()

            if self.useRotationScheme:
                begin("Computing tentative pressure")
            else:
                begin("Computing pressure")
            if self.forceOutflow and problem.can_force_outflow:
                out = problem.compute_outflow(u_)
                info('Tentative outflow: %f' % out)
                n_o = -problem.last_inflow - out
                info('Needed outflow: %f' % n_o)
                need_outflow.assign(n_o)
            self.tc.start('rhs')
            b = assemble(L2)
            self.tc.end('rhs')
            self.tc.start('applybcP')
            [bc.apply(A2, b) for bc in bcp]
            if self.args.bc == 'nullspace':
                self.null_space.orthogonalize(b)
            self.tc.end('applybcP')
            try:
                self.tc.start('solve 2')
                self.solver_p.solve(A2, p_.vector(), b)
                self.tc.end('solve 2')
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if self.useRotationScheme:
                foo = Function(self.Q)
                foo.assign(p_ + p0)
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(foo)
                    problem.save_pressure(True, foo)
            else:
                foo = Function(self.Q)
                foo.assign(p_)  # we do not want to change p_ by averaging
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(foo)
                    problem.save_pressure(False, foo)
            end()

            begin("Computing corrected velocity")
            self.tc.start('rhs')
            b = assemble(L3)
            self.tc.end('rhs')
            if not self.args.B:
                self.tc.start('applybc3')
                [bc.apply(A3, b) for bc in bcu]
                self.tc.end('applybc3')
            try:
                self.tc.start('solve 3')
                self.solver_vel_cor.solve(A3, u_cor.vector(), b)
                self.tc.end('solve 3')
                problem.compute_err(False, u_cor, t)
                problem.compute_div(False, u_cor)
            except RuntimeError as inst:
                problem.report_fail(t)
                return 1
            if save_this_step:
                self.tc.start('saveVel')
                problem.save_vel(False, u_cor)
                self.tc.end('saveVel')
            if save_this_step and not onlyVel:
                problem.save_div(False, u_cor)
            end()

            if self.useRotationScheme:
                begin("Rotation scheme pressure correction")
                self.tc.start('rhs')
                b = assemble(L4)
                self.tc.end('rhs')
                try:
                    self.tc.start('solve 4')
                    self.solver_rot.solve(A4, p_mod.vector(), b)
                    self.tc.end('solve 4')
                except RuntimeError as inst:
                    problem.report_fail(t)
                    return 1
                if save_this_step and not onlyVel:
                    problem.averaging_pressure(p_mod)
                    problem.save_pressure(False, p_mod)
                end()

                if problem.args.debug_rot:
                    # save applied pressure correction (expressed as a term added to RHS of next tentative vel. step)
                    # see comment next to argument definition
                    plot_cor_v.assign(project(k * grad(nu * div(u_)), self.V))
                    problem.fileDict['grad_cor']['file'].write(plot_cor_v, t)

            # compute functionals (e. g. forces)
            problem.compute_functionals(u_cor, p_mod if self.useRotationScheme else p_, t, step)

            # Move to next time step
            self.tc.start('next')
            u1.assign(u0)
            u0.assign(u_cor)
            u_.assign(u_cor)  # use corrected velocity as initial guess in first step

            if self.useRotationScheme:
                p0.assign(p_mod)
            else:
                p0.assign(p_)

            t = round(t + dt, 6)  # round time step to 0.000001
            step += 1
            self.tc.end('next')

        info("Finished: Incremental pressure correction scheme n. 1")
        problem.report()
        return 0
Exemplo n.º 6
0
# Define forms (dont redefine functions used here)
# step 1
u0 = Function(V)
u1 = Function(V)
p0 = Function(Q)
u_tent = TrialFunction(V)
v = TestFunction(V)
# U_ = 1.5*u0 - 0.5*u1
# nonlinearity = inner(dot(0.5 * (u_tent.dx(0) + u0.dx(0)), U_), v) * dx
# F_tent = (1./dt)*inner(u_tent - u0, v) * dx + nonlinearity\
#     + nu*inner(0.5 * (u_tent.dx(0) + u0.dx(0)), v.dx(0)) * dx + inner(p0.dx(0), v) * dx\
#     - inner(f, v)*dx     # solve to u_
# using explicite scheme: so LHS has interpretation as heat equation, RHS are sources
F_tent = (1./dt)*inner(u_tent - u0, v)*dx + inner(dot(u0.dx(0), u0), v)*dx + nu*inner((u_tent.dx(0) + u0.dx(0)), v.dx(0)) * dx + inner(p0.dx(0), v) * dx\
    - inner(f, v)*dx     # solve to u_
a_tent, L_tent = system(F_tent)
# step 2
u_tent_computed = Function(V)
p = TrialFunction(Q)
q = TestFunction(Q)
F_p = inner(grad(p - p0), grad(q)) * dx + (1. / dt) * u_tent_computed.dx(
    0) * q * dx  # + 2*p.dx(0)*q*ds(1) # tried to force dp/dn=0 on inflow
# TEST: prescribe Neumann outflow BC
# F_p = inner(grad(p-p0), grad(q))*dx + (1./dt)*u_tent_computed.dx(0)*q*dx + (1./dt)*(v_in_expr-u_tent_computed)*q*ds(2)
a_p, L_p = system(F_p)
A_p = assemble(a_p)
as_backend_type(A_p).set_nullspace(null_space)
print(A_p.array())
# step 2 rotation
# F_p_rot = inner(grad(p), grad(q))*dx + (1./dt)*u_tent_computed.dx(0)*q*dx + (1./dt)*(v_in_expr-u_tent_computed)*q*ds(2)
F_p_rot = inner(grad(p),