Exemplo n.º 1
0
    def submit_all(self, coords=None, queue=None, debug=False):
        """
        Submit likelihood analyses on a set of coordinates. If
        coords is `None`, submit all coordinates in the footprint.

        Inputs:
        coords : Array of target locations in Galactic coordinates. 
        queue  : Overwrite submit queue.
        debug  : Don't run.
        """
        if coords is None:
            pixels = np.arange(hp.nside2npix(self.nside_likelihood))
        else:
            coords = np.asarray(coords)
            if coords.ndim == 1:
                coords = np.array([coords])
            if coords.shape[1] == 2:
                lon, lat = coords.T
                radius = np.zeros(len(lon))
            elif coords.shape[1] == 3:
                lon, lat, radius = coords.T
            else:
                raise Exception("Unrecognized coords shape:" +
                                str(coords.shape))

            #ADW: targets is still in glon,glat
            if self.config['coords']['coordsys'].lower() == 'cel':
                lon, lat = gal2cel(lon, lat)

            vec = ang2vec(lon, lat)
            pixels = np.zeros(0, dtype=int)
            for v, r in zip(vec, radius):
                pix = query_disc(self.nside_likelihood,
                                 v,
                                 r,
                                 inclusive=True,
                                 fact=32)
                pixels = np.hstack([pixels, pix])
            #pixels = np.unique(pixels)

        inside = ugali.utils.skymap.inFootprint(self.config, pixels)
        if inside.sum() != len(pixels):
            logger.warning("Ignoring pixels outside survey footprint:\n" +
                           str(pixels[~inside]))
        if inside.sum() == 0:
            logger.warning("No pixels inside footprint.")
            return

        # Only write the configfile once
        outdir = mkdir(self.config['output']['likedir'])
        # Actually copy config instead of re-writing
        shutil.copy(self.config.filename, outdir)
        configfile = join(outdir, os.path.basename(self.config.filename))

        pixels = pixels[inside]
        self.submit(pixels, queue=queue, debug=debug, configfile=configfile)
Exemplo n.º 2
0
 def _cache(self, name=None):
     pixel_area = hp.nside2pixarea(self.nside, degrees=True)
     vec = ang2vec(self.lon, self.lat)
     #self.pix = query_disc(self.nside,vec,self.extension)
     self.pix = ang2disc(self.nside,
                         self.lon,
                         self.lat,
                         self.extension,
                         inclusive=True)
     self._norm = 1. / (len(self.pix) * pixel_area)
Exemplo n.º 3
0
    def submit_all(self, coords=None, queue=None, debug=False):
        """
        Submit likelihood analyses on a set of coordinates. If
        coords is `None`, submit all coordinates in the footprint.

        Inputs:
        coords : Array of target locations in Galactic coordinates. 
        queue  : Overwrite submit queue.
        debug  : Don't run.
        """
        if coords is None:
            pixels = numpy.arange(healpy.nside2npix(self.nside_likelihood))
        else:
            coords = numpy.asarray(coords)
            if coords.ndim == 1:
                coords = numpy.array([coords])
            if coords.shape[1] == 2:
                glon,glat = coords.T
                radius    = numpy.zeros(len(glon))
            elif coords.shape[1] == 3:
                glon,glat,radius = coords.T
            else:
                raise Exception("Unrecognized coords shape:"+str(coords.shape))
            vec = ang2vec(glon,glat)
            pixels = numpy.zeros(0, dtype=int)
            for v,r in zip(vec,radius):
                pix = query_disc(self.nside_likelihood,v,r,inclusive=True,fact=32)
                pixels = numpy.hstack([pixels, pix])
            #pixels = numpy.unique(pixels)

        inside = ugali.utils.skymap.inFootprint(self.config,pixels)
        if inside.sum() != len(pixels):
            logger.warning("Ignoring pixels outside survey footprint:\n"+str(pixels[~inside]))
        if inside.sum() == 0:
            logger.warning("No pixels inside footprint.")
            return

        # Only write the configfile once
        outdir = mkdir(self.config['output']['likedir'])
        configfile = '%s/config_queue.py'%(outdir)
        self.config.write(configfile)

        pixels = pixels[inside]
        self.submit(pixels,queue=queue,debug=debug,configfile=configfile)
Exemplo n.º 4
0
    def __init__(self, config, lon, lat):

        self.config = Config(config)
        self.lon = lon
        self.lat = lat

        self.projector = ugali.utils.projector.Projector(self.lon, self.lat)

        self.vec = vec = ang2vec(self.lon, self.lat)
        self.pix = ang2pix(self.config['coords']['nside_likelihood'], self.lon,
                           self.lat)

        # Pixels from the entire ROI disk
        pix = query_disc(self.config['coords']['nside_pixel'], vec,
                         self.config['coords']['roi_radius'])
        self.pixels = PixelRegion(self.config['coords']['nside_pixel'], pix)

        # Pixels in the interior region
        pix = query_disc(self.config['coords']['nside_pixel'], vec,
                         self.config['coords']['roi_radius_interior'])
        self.pixels_interior = PixelRegion(
            self.config['coords']['nside_pixel'], pix)

        # Pixels in the outer annulus
        pix = query_disc(self.config['coords']['nside_pixel'], vec,
                         self.config['coords']['roi_radius_annulus'])
        pix = np.setdiff1d(self.pixels, pix)
        self.pixels_annulus = PixelRegion(self.config['coords']['nside_pixel'],
                                          pix)

        # Pixels within target healpix region
        pix = ugali.utils.skymap.subpixel(
            self.pix, self.config['coords']['nside_likelihood'],
            self.config['coords']['nside_pixel'])
        self.pixels_target = PixelRegion(self.config['coords']['nside_pixel'],
                                         pix)

        # Boolean arrays for selecting given pixels
        # (Careful, this works because pixels are pre-sorted by query_disc before in1d)
        self.pixel_interior_cut = np.in1d(self.pixels, self.pixels_interior)
        self.pixel_annulus_cut = np.in1d(self.pixels, self.pixels_annulus)

        # Some pixel properties
        self.area_pixel = hp.nside2pixarea(
            self.config.params['coords']['nside_pixel'], degrees=True)  # deg^2
        self.max_pixrad = np.degrees(
            hp.max_pixrad(self.config['coords']['nside_pixel']))  # deg

        # ADW: These are really bin edges, should be careful and consistent
        # It would be cleaner to separate the CMD from ROI
        self.bins_mag = np.linspace(self.config.params['mag']['min'],
                                    self.config.params['mag']['max'],
                                    self.config.params['mag']['n_bins'] + 1)

        self.bins_color = np.linspace(
            self.config.params['color']['min'],
            self.config.params['color']['max'],
            self.config.params['color']['n_bins'] + 1)

        self.centers_mag = ugali.utils.binning.centers(self.bins_mag)
        self.centers_color = ugali.utils.binning.centers(self.bins_color)

        self.delta_mag = self.bins_mag[1] - self.bins_mag[0]
        self.delta_color = self.bins_color[1] - self.bins_color[0]
Exemplo n.º 5
0
 def _cache(self, name=None):
     pixel_area = healpy.nside2pixarea(self.nside,degrees=True)
     vec = ang2vec(self.lon, self.lat)
     self.pix = query_disc(self.nside,vec,self.extension)
     self._norm = 1./(len(self.pix)*pixel_area)
Exemplo n.º 6
0
    def __init__(self, config, lon, lat):

        self.config = Config(config)
        self.lon = lon
        self.lat = lat

        self.projector = ugali.utils.projector.Projector(self.lon, self.lat)

        self.vec = vec = ang2vec(self.lon, self.lat)
        self.pix = ang2pix(self.config['coords']['nside_likelihood'], self.lon,
                           self.lat)

        # Pixels from the entire ROI disk
        pix = query_disc(self.config['coords']['nside_pixel'], vec,
                         self.config['coords']['roi_radius'])
        self.pixels = PixelRegion(self.config['coords']['nside_pixel'], pix)

        # Pixels in the interior region
        pix = query_disc(self.config['coords']['nside_pixel'], vec,
                         self.config['coords']['roi_radius_interior'])
        self.pixels_interior = PixelRegion(
            self.config['coords']['nside_pixel'], pix)

        # Pixels in the outer annulus
        pix = query_disc(self.config['coords']['nside_pixel'], vec,
                         self.config['coords']['roi_radius_annulus'])
        pix = numpy.setdiff1d(self.pixels, pix)
        self.pixels_annulus = PixelRegion(self.config['coords']['nside_pixel'],
                                          pix)

        # Pixels within target healpix region
        pix = ugali.utils.skymap.subpixel(
            self.pix, self.config['coords']['nside_likelihood'],
            self.config['coords']['nside_pixel'])
        self.pixels_target = PixelRegion(self.config['coords']['nside_pixel'],
                                         pix)

        # Boolean arrays for selecting given pixels
        # (Careful, this works because pixels are pre-sorted by query_disc before in1d)
        self.pixel_interior_cut = numpy.in1d(self.pixels, self.pixels_interior)

        # ADW: Updated for more general ROI shapes
        #self.pixel_annulus_cut  = ~self.pixel_interior_cut
        self.pixel_annulus_cut = numpy.in1d(self.pixels, self.pixels_annulus)

        # # These should be unnecessary now
        # self.centers_lon, self.centers_lat = self.pixels.lon, self.pixels.lat
        # self.centers_lon_interior,self.centers_lat_interior = self.pixels_interior.lon,self.pixels_interior.lat
        # self.centers_lon_target, self.centers_lat_target = self.pixels_target.lon, self.pixels_target.lat

        self.area_pixel = healpy.nside2pixarea(
            self.config.params['coords']['nside_pixel'], degrees=True)  # deg^2
        """
        self.centers_x = self._centers(self.bins_x)
        self.centers_y = self._centers(self.bins_y)

        self.delta_x = self.config.params['coords']['pixel_size']
        self.delta_y = self.config.params['coords']['pixel_size']
        
        # Should actually try to take projection effects into account for better accuracy
        # MC integration perhaps?
        # Throw points in a cone around full ROI and see what fraction fall in
        self.area_pixel = self.config.params['coords']['pixel_size']**2
        
        self.centers_lon, self.centers_lat = self.projector.imageToSphere(self.centers_x, self.centers_y)
        """

        # ADW: These are really bin edges, should be careful and consistent
        self.bins_mag = numpy.linspace(self.config.params['mag']['min'],
                                       self.config.params['mag']['max'],
                                       self.config.params['mag']['n_bins'] + 1)

        self.bins_color = numpy.linspace(
            self.config.params['color']['min'],
            self.config.params['color']['max'],
            self.config.params['color']['n_bins'] + 1)

        self.centers_mag = ugali.utils.binning.centers(self.bins_mag)
        self.centers_color = ugali.utils.binning.centers(self.bins_color)

        self.delta_mag = self.bins_mag[1] - self.bins_mag[0]
        self.delta_color = self.bins_color[1] - self.bins_color[0]

        # Axis labels
        self.label_x = 'x (deg)'
        self.label_y = 'y (deg)'

        if self.config.params['catalog']['band_1_detection']:
            self.label_mag = '%s (mag)' % (
                self.config.params['catalog']['mag_1_field'])
        else:
            self.label_mag = '%s (mag)' % (
                self.config.params['catalog']['mag_2_field'])
        self.label_color = '%s - %s (mag)' % (
            self.config.params['catalog']['mag_1_field'],
            self.config.params['catalog']['mag_2_field'])
Exemplo n.º 7
0
    def __init__(self, config, lon, lat):

        self.config = Config(config)
        self.lon = lon
        self.lat = lat

        self.projector = ugali.utils.projector.Projector(self.lon, self.lat)

        self.vec = vec = ang2vec(self.lon, self.lat)
        self.pix = ang2pix(self.config['coords']['nside_likelihood'],self.lon,self.lat)

        # Pixels from the entire ROI disk
        pix = query_disc(self.config['coords']['nside_pixel'], vec, 
                         self.config['coords']['roi_radius'])
        self.pixels = PixelRegion(self.config['coords']['nside_pixel'],pix)

        # Pixels in the interior region
        pix = query_disc(self.config['coords']['nside_pixel'], vec, 
                         self.config['coords']['roi_radius_interior'])
        self.pixels_interior = PixelRegion(self.config['coords']['nside_pixel'],pix)

        # Pixels in the outer annulus
        pix = query_disc(self.config['coords']['nside_pixel'], vec, 
                         self.config['coords']['roi_radius_annulus'])
        pix = numpy.setdiff1d(self.pixels, pix)
        self.pixels_annulus = PixelRegion(self.config['coords']['nside_pixel'],pix)

        # Pixels within target healpix region
        pix = ugali.utils.skymap.subpixel(self.pix,self.config['coords']['nside_likelihood'],
                                          self.config['coords']['nside_pixel'])
        self.pixels_target = PixelRegion(self.config['coords']['nside_pixel'],pix)

        # Boolean arrays for selecting given pixels 
        # (Careful, this works because pixels are pre-sorted by query_disc before in1d)
        self.pixel_interior_cut = numpy.in1d(self.pixels, self.pixels_interior)

        # ADW: Updated for more general ROI shapes
        #self.pixel_annulus_cut  = ~self.pixel_interior_cut
        self.pixel_annulus_cut  = numpy.in1d(self.pixels, self.pixels_annulus)

        # # These should be unnecessary now
        # self.centers_lon, self.centers_lat = self.pixels.lon, self.pixels.lat
        # self.centers_lon_interior,self.centers_lat_interior = self.pixels_interior.lon,self.pixels_interior.lat
        # self.centers_lon_target, self.centers_lat_target = self.pixels_target.lon, self.pixels_target.lat

        self.area_pixel = healpy.nside2pixarea(self.config.params['coords']['nside_pixel'],degrees=True) # deg^2
                                     
        """
        self.centers_x = self._centers(self.bins_x)
        self.centers_y = self._centers(self.bins_y)

        self.delta_x = self.config.params['coords']['pixel_size']
        self.delta_y = self.config.params['coords']['pixel_size']
        
        # Should actually try to take projection effects into account for better accuracy
        # MC integration perhaps?
        # Throw points in a cone around full ROI and see what fraction fall in
        self.area_pixel = self.config.params['coords']['pixel_size']**2
        
        self.centers_lon, self.centers_lat = self.projector.imageToSphere(self.centers_x, self.centers_y)
        """

        # ADW: These are really bin edges, should be careful and consistent
        self.bins_mag = numpy.linspace(self.config.params['mag']['min'],
                                       self.config.params['mag']['max'],
                                       self.config.params['mag']['n_bins'] + 1)
        
        self.bins_color = numpy.linspace(self.config.params['color']['min'],
                                         self.config.params['color']['max'],
                                         self.config.params['color']['n_bins'] + 1)

        self.centers_mag = ugali.utils.binning.centers(self.bins_mag)
        self.centers_color = ugali.utils.binning.centers(self.bins_color)

        self.delta_mag = self.bins_mag[1] - self.bins_mag[0]
        self.delta_color = self.bins_color[1] - self.bins_color[0]

        # Axis labels
        self.label_x = 'x (deg)'
        self.label_y = 'y (deg)'
        
        if self.config.params['catalog']['band_1_detection']:
            self.label_mag = '%s (mag)'%(self.config.params['catalog']['mag_1_field'])
        else:
            self.label_mag = '%s (mag)'%(self.config.params['catalog']['mag_2_field'])
        self.label_color = '%s - %s (mag)'%(self.config.params['catalog']['mag_1_field'],
                                            self.config.params['catalog']['mag_2_field'])