Exemplo n.º 1
0
                    print('  Directory {0} does not contain an image with file '
                          'name {1}. Skip.'.format(data_dir, os.path.basename(image_name)))
                    continue

                # Read the image
                print('  Reading {} ...'.format(image_name))
                nim = nib.load(image_name)
                image = nim.get_data()
                X, Y, Z, T = image.shape
                orig_image = image

                print('  Segmenting full sequence ...')
                start_seg_time = time.time()

                # Intensity rescaling
                image = rescale_intensity(image, (1, 99))

                # Prediction (segmentation)
                pred = np.zeros(image.shape)

                # Pad the image size to be a factor of 16 so that the
                # downsample and upsample procedures in the network will
                # result in the same image size at each resolution level.
                X2, Y2 = int(math.ceil(X / 16.0)) * 16, int(math.ceil(Y / 16.0)) * 16
                x_pre, y_pre = int((X2 - X) / 2), int((Y2 - Y) / 2)
                x_post, y_post = (X2 - X) - x_pre, (Y2 - Y) - y_pre
                image = np.pad(image, ((x_pre, x_post), (y_pre, y_post), (0, 0), (0, 0)), 'constant')

                # Process each time frame
                for t in range(T):
                    # Transpose the shape to NXYC
Exemplo n.º 2
0
def get_random_batch(filename_list,
                     batch_size,
                     image_size=192,
                     data_augmentation=False,
                     shift=0.0,
                     rotate=0.0,
                     scale=0.0,
                     intensity=0.0,
                     flip=False):
    # Randomly select batch_size images from filename_list
    n_file = len(filename_list)
    print(n_file)
    n_selected = 0
    images = []
    labels = []
    nims = []
    while n_selected < batch_size:
        rand_index = random.randrange(n_file)
        image_name, label_name, frame = filename_list[rand_index]
        if os.path.exists(image_name) and os.path.exists(label_name):
            print('  Select {0} {1} {2}'.format(image_name, label_name, frame))

            # Read image and label
            nim = nib.load(image_name)
            image = nim.get_fdata()
            nil = nib.load(label_name)
            label = nil.get_fdata()

            fr = get_frames(label, 'sa')
            label = label[:, :, :, fr[frame]]
            image = image[:, :, :, fr[frame]]

            # Handle exceptions
            if image.shape != label.shape:
                print('Error: mismatched size, image.shape = {0}, '
                      'label.shape = {1}'.format(image.shape, label.shape))
                print('Skip {0}, {1}'.format(image_name, label_name))
                continue

            if image.max() < 1e-6:
                print('Error: blank image, image.max = {0}'.format(
                    image.max()))
                print('Skip {0} {1}'.format(image_name, label_name))
                continue

            # Normalise the image size
            X, Y, Z = image.shape
            cx, cy = int(X / 2), int(Y / 2)
            image = crop_image(image, cx, cy, image_size)
            label = crop_image(label, cx, cy, image_size)

            # Intensity rescaling
            image = rescale_intensity(image, (1.0, 99.0))

            print(image.shape)
            # Append the image slices to the batch
            # Use list for appending, which is much faster than numpy array
            for z in range(Z):
                images += [image[:, :, z]]
                labels += [label[:, :, z]]
                nims.append(nim)

            # Increase the counter
            n_selected += 1

    # Convert to a numpy array
    images = np.array(images, dtype=np.float32)
    labels = np.array(labels, dtype=np.int32)

    print(images.shape)

    # Add the channel dimension
    # tensorflow by default assumes NHWC format
    images = np.expand_dims(images, axis=3)

    # Perform data augmentation
    if data_augmentation:
        images, labels = data_augmenter(images,
                                        labels,
                                        shift=shift,
                                        rotate=rotate,
                                        scale=scale,
                                        intensity=intensity,
                                        flip=flip)
    print(images.shape)
    return images, labels, nims