Exemplo n.º 1
0
 def test_happy_path_single(self):
     softmax_values = np.array([0.1, 0.8, 0.08, 0.02])
     softmax_values = np.expand_dims(softmax_values, 0)
     prediction, entropies = SoftmaxEntropy.calculate(softmax_values)
     self.assertEqual(1, prediction[0])
     # https://www.wolframalpha.com/input/?i=-+%280.1*log2%280.1%29+%2B+0.8  [url continued in line below]
     #   *log2%280.8%29%2B0.08*log2%280.08%29%2B0.02*log2%280.02%29%29
     self.assertAlmostEqual(0.9941209043760985826573513724, entropies[0])
Exemplo n.º 2
0
 def test_duplicate_non_winner(self):
     softmax_values = np.array([[0.1, 0.8, 0.05, 0.05],
                                [0.2, 0.09, 0.7, 0.01]])
     prediction, softmax = SoftmaxEntropy.calculate(softmax_values)
     self.assertEqual((2, ), prediction.shape)
     self.assertEqual((2, ), softmax.shape)
     self.assertEqual(1, prediction[0])
     # https://www.wolframalpha.com/input/?i=-+%280.1*log2%280.1%29+%2B+0.08  [url continued in line below]
     #   *log2%280.08%29%2B0.5*log2%280.5%29%2B0.05*log2%280.05%29%29
     self.assertAlmostEqual(1.0219280948873623, softmax[0])
     self.assertEqual(2, prediction[1])
     # Calculation: See test above
     self.assertAlmostEqual(1.203679208805967594, softmax[1])
Exemplo n.º 3
0
 def test_duplicate_winner(self):
     softmax_values = np.array([[0.4, 0.4, 0.1, 0.1],
                                [0.2, 0.09, 0.7, 0.01]])
     prediction, softmax = SoftmaxEntropy.calculate(softmax_values)
     self.assertEqual((2, ), prediction.shape)
     self.assertEqual((2, ), softmax.shape)
     self.assertTrue(
         0 == prediction[0] or 1 == prediction[0],
         "Prediction must be index 0 or 1, but was {0}".format(
             prediction[0]),
     )
     # https://www.wolframalpha.com/input/?i=-+%280.4*log2%280.4%29+%2B+0.4  [url continued in line below]
     #   *log2%280.4%29%2B0.1*log2%280.1%29%2B0.1*log2%280.1%29%29
     self.assertAlmostEqual(1.7219280948873623, softmax[0])
     self.assertEqual(2, prediction[1])
     # Calculation: See test above
     self.assertAlmostEqual(1.203679208805967594, softmax[1])
Exemplo n.º 4
0
 def test_happy_path_batch(self):
     softmax_values = np.array([[0.1, 0.8, 0.08, 0.02],
                                [0.1, 0.8, 0.08, 0.02],
                                [0.2, 0.09, 0.7, 0.01]])
     prediction, softmax = SoftmaxEntropy.calculate(softmax_values)
     self.assertEqual((3, ), prediction.shape)
     self.assertEqual((3, ), softmax.shape)
     self.assertEqual(1, prediction[0])
     # Calc: See test above
     self.assertAlmostEqual(0.9941209043760985826573513724, softmax[0])
     self.assertEqual(1, prediction[1])
     # Calc: See test above
     self.assertAlmostEqual(0.9941209043760985826573513724, softmax[1])
     self.assertEqual(2, prediction[2])
     # https://www.wolframalpha.com/input/?i=-+%280.2*log2%280.2%29+%2B+0.09  [url continued in line below]
     # *log2%280.09%29%2B0.7*log2%280.7%29%2B0.01*log2%280.01%29%29
     self.assertAlmostEqual(1.203679208805967594, softmax[2])
Exemplo n.º 5
0
 def test_problem_type(self):
     self.assertEqual(SoftmaxEntropy.problem_type(),
                      ProblemType.CLASSIFICATION)
Exemplo n.º 6
0
 def test_samples_type_declaration(self):
     self.assertFalse(SoftmaxEntropy.takes_samples())
Exemplo n.º 7
0
 def test_is_confidence(self):
     self.assertFalse(SoftmaxEntropy.is_confidence())
     self.assertFalse(SoftmaxEntropy().is_confidence())