def test_bias(self):
        """ Test forward bias of algo. Test on a portion of given data set, then add several
        data points and see if weights has changed. """
        S = self.random_portfolio
        k = 10
        B1 = CRP().run(S.iloc[:-k]).B
        B2 = CRP().run(S).B

        self.assertTrue((B1 == B2.iloc[:-k]).all().all())
    def test_equity(self):
        """ Make sure that equity of a portfolio [1,0,...,0] with NaN values
        is the same as asset itself. """
        S = self.random_portfolio
        b = [1.] + [0.] * (len(S.columns) - 1)
        result = CRP(b).run(S)

        self.assertAlmostEqual(result.total_wealth, S[S.columns[0]].iget(-1),
                               10)
Exemplo n.º 3
0
    def hedge(self, result=None):
        """ Hedge results with results of other strategy (subtract weights).
        :param result: Other result object. Default is UCRP.
        :return: New AlgoResult object.
        """
        if result is None:
            from algos import CRP
            result = CRP().run(self.X.cumprod())

        return AlgoResult(self.X, self.B - result.B)
Exemplo n.º 4
0
    def plot(self,
             ucrp=False,
             bah=False,
             residual=False,
             assets=False,
             **kwargs):
        """ Plot strategy equity.
        :param ucrp: Add uniform CRP as a benchmark.
        :param bah: Add Buy-And-Hold portfolio as a benchmark.
        :param residual: Add portfolio minus UCRP as a benchmark.
        :param assets: Add asset prices.
        :param kwargs: Additional arguments for pd.DataFrame.plot
        """
        # NOTE: order of plotting is important because of coloring
        # plot portfolio
        d = self.to_dataframe()
        D = d.copy()

        # add individual assets
        if isinstance(assets, bool):
            if assets:
                assets = self[0].asset_equity.columns
            else:
                assets = []

        if list(assets):
            D = D.join(self[0].asset_equity)

        ax = D.plot(color=_colors_hash(D.columns), **kwargs)
        kwargs['ax'] = ax

        ax.set_ylabel('Total wealth')

        # plot residual strategy
        if residual:
            d['RESIDUAL'] = self[0].residual_r.cumprod()
            d[['RESIDUAL']].plot(**kwargs)

        # plot uniform constant rebalanced portfolio
        if ucrp:
            from .algos import CRP
            crp_algo = CRP().run(self[0].X.cumprod())
            crp_algo.fee = self[0].fee
            d['UCRP'] = crp_algo.equity
            d[['UCRP']].plot(**kwargs)

        # add bah
        if bah:
            from .algos import BAH
            bah_algo = BAH().run(self[0].X.cumprod())
            bah_algo.fee = self[0].fee
            d['BAH'] = bah_algo.equity
            d[['BAH']].plot(**kwargs)

        return ax
Exemplo n.º 5
0
    def plot(self, ucrp=False, bah=False, assets=False, **kwargs):
        """ Plot strategy equity.
        :param ucrp: Add uniform CRP as a benchmark.
        :param bah: Add Buy-And-Hold portfolio as a benchmark.
        :param assets: Add asset prices.
        :param kwargs: Additional arguments for pd.DataFrame.plot
        """
        # NOTE: order of plotting is important because of coloring
        # plot portfolio
        d = self.to_dataframe()
        portfolio = d.copy()
        ax = portfolio.plot(linewidth=3., legend=False, **kwargs)
        kwargs['ax'] = ax

        ax.set_ylabel('Total wealth')

        # plot uniform constant rebalanced portfolio
        if ucrp:
            from universal.algos import CRP
            crp_algo = CRP().run(self[0].X.cumprod())
            crp_algo.fee = self[0].fee
            d['UCRP'] = crp_algo.equity
            d[['UCRP']].plot(**kwargs)

        # add bah
        if bah:
            from universal.algos import BAH
            bah_algo = BAH().run(self[0].X.cumprod())
            bah_algo.fee = self[0].fee
            d['BAH'] = bah_algo.equity
            d[['BAH']].plot(**kwargs)

        # add individual assets
        if isinstance(assets, bool):
            if assets:
                assets = self[0].asset_equity.columns
            else:
                assets = []

        if list(assets):
            self[0].asset_equity.sort_index(axis=1).plot(
                color=_colors(len(assets) + 1), **kwargs)

        # plot portfolio again to highlight it
        kwargs['color'] = 'blue'
        portfolio.plot(linewidth=3., **kwargs)

        return ax
Exemplo n.º 6
0
 def ucrp_sharpe(self):
     from universal.algos import CRP
     result = CRP().run(self.X.cumprod())
     return result.sharpe
Exemplo n.º 7
0
    def ucrp_sharpe(self):
        from .algos import CRP

        result = CRP().run(self.X.cumprod())
        result.set_rf_rate(self.rf_rate)
        return result.sharpe