Exemplo n.º 1
0
def cell_name_to_ids(name, source=None):
    path = get_file(DATA_URL + 'NCI60_CELLNAME_to_Combo.txt')
    df1 = pd.read_csv(path, sep='\t')
    hits1 = candle.lookup(df1,
                          name,
                          'NCI60.ID', ['NCI60.ID', 'CELLNAME', 'Name'],
                          match='contains')
    path = get_file(DATA_URL + 'cl_mapping')
    df2 = pd.read_csv(path, sep='\t', header=None)
    hits2 = candle.lookup(df2, name, [0, 1], [0, 1], match='contains')
    hits = hits1 + hits2
    if source:
        hits = [x for x in hits if x.startswith(source.upper() + '.')]
    return hits
Exemplo n.º 2
0
def load_drug_set_descriptors(drug_set='Combined_PubChem', ncols=None, usecols=None,
                              scaling=None, imputing=None, add_prefix=False):
    path = get_file(DATA_URL + '{}_dragon7_descriptors.tsv'.format(drug_set))

    df_cols = pd.read_csv(path, engine='c', sep='\t', nrows=0)
    total = df_cols.shape[1] - 1
    if usecols is not None:
        usecols = [x for x in usecols if x in df_cols.columns]
        if usecols[0] != 'NAME':
            usecols = ['NAME'] + usecols
        df_cols = df_cols.loc[:, usecols]
    elif ncols and ncols < total:
        usecols = np.random.choice(total, size=ncols, replace=False)
        usecols = np.append([0], np.add(sorted(usecols), 1))
        df_cols = df_cols.iloc[:, usecols]

    dtype_dict = dict((x, np.float32) for x in df_cols.columns[1:])
    df = pd.read_csv(path, engine='c', sep='\t', usecols=usecols, dtype=dtype_dict,
                     na_values=['na', '-', ''])

    df1 = pd.DataFrame(df.loc[:, 'NAME'])
    df1.rename(columns={'NAME': 'Drug'}, inplace=True)

    df2 = df.drop('NAME', 1)
    if add_prefix:
        df2 = df2.add_prefix('dragon7.')

    df2 = candle.drop_impute_and_scale_dataframe(df2, scaling, imputing, dropna=None)

    df = pd.concat([df1, df2], axis=1)
    return df
Exemplo n.º 3
0
def load_single_dose_response(combo_format=False, fraction=True):
    # path = get_file(DATA_URL + 'combined_single_drug_growth')
    path = get_file(DATA_URL + 'rescaled_combined_single_drug_growth')

    df = global_cache.get(path)
    if df is None:
        df = pd.read_csv(path, sep='\t', engine='c',
                         na_values=['na', '-', ''],
                         # nrows=10,
                         dtype={'SOURCE': str, 'DRUG_ID': str,
                                'CELLNAME': str, 'CONCUNIT': str,
                                'LOG_CONCENTRATION': np.float32,
                                'EXPID': str, 'GROWTH': np.float32})
        global_cache[path] = df

    df['DOSE'] = -df['LOG_CONCENTRATION']

    df = df.rename(columns={'CELLNAME': 'CELL', 'DRUG_ID': 'DRUG', 'EXPID': 'STUDY'})
    df = df[['SOURCE', 'CELL', 'DRUG', 'DOSE', 'GROWTH', 'STUDY']]

    if fraction:
        df['GROWTH'] /= 100

    if combo_format:
        df = df.rename(columns={'DRUG': 'DRUG1', 'DOSE': 'DOSE1'})
        df['DRUG2'] = np.nan
        df['DOSE2'] = np.nan
        df['DRUG2'] = df['DRUG2'].astype(object)
        df['DOSE2'] = df['DOSE2'].astype(np.float32)
        df = df[['SOURCE', 'CELL', 'DRUG1', 'DOSE1', 'DRUG2', 'DOSE2', 'GROWTH', 'STUDY']]

    return df
Exemplo n.º 4
0
def drug_name_to_ids(name, source=None):
    df1 = load_drug_info()
    path = get_file(DATA_URL + 'NCI_IOA_AOA_drugs')
    df2 = pd.read_csv(path, sep='\t', dtype=str)
    df2['NSC'] = 'NSC.' + df2['NSC']
    hits1 = candle.lookup(df1, name, 'ID', ['ID', 'NAME', 'CLEAN_NAME', 'PUBCHEM'])
    hits2 = candle.lookup(df2, name, 'NSC', ['NSC', 'Generic Name', 'Preffered Name'])
    hits = hits1 + hits2
    if source:
        hits = [x for x in hits if x.startswith(source.upper()+'.')]
    return hits
Exemplo n.º 5
0
def load_combo_dose_response(fraction=True):
    path = get_file(DATA_URL + 'ComboDrugGrowth_Nov2017.csv')
    df = global_cache.get(path)
    if df is None:
        df = pd.read_csv(path, sep=',', engine='c',
                         na_values=['na','-',''],
                         usecols=['CELLNAME', 'NSC1', 'CONC1', 'NSC2', 'CONC2',
                                  'PERCENTGROWTH', 'VALID', 'SCREENER', 'STUDY'],
                         # nrows=10000,
                         dtype={'CELLNAME': str, 'NSC1': str, 'NSC2': str,
                                'CONC1': np.float32, 'CONC2': np.float32,
                                'PERCENTGROWTH':np.float32, 'VALID': str,
                                'SCREENER': str, 'STUDY': str},
                         error_bad_lines=False, warn_bad_lines=True)
        global_cache[path] = df

    df = df[df['VALID'] == 'Y']

    df['SOURCE'] = 'ALMANAC.' + df['SCREENER']

    cellmap_path = get_file(DATA_URL + 'NCI60_CELLNAME_to_Combo.txt')
    df_cellmap = pd.read_csv(cellmap_path, sep='\t')
    df_cellmap.set_index('Name', inplace=True)
    cellmap = df_cellmap[['NCI60.ID']].to_dict()['NCI60.ID']

    df['CELL'] = df['CELLNAME'].map(lambda x: cellmap[x])

    df['DOSE1'] = -np.log10(df['CONC1'])
    df['DOSE2'] = -np.log10(df['CONC2'])

    df['DRUG1'] = 'NSC.' + df['NSC1']
    df['DRUG2'] = 'NSC.' + df['NSC2']

    if fraction:
        df['GROWTH'] = df['PERCENTGROWTH'] / 100
    else:
        df['GROWTH'] = df['PERCENTGROWTH']

    df = df[['SOURCE', 'CELL', 'DRUG1', 'DOSE1', 'DRUG2', 'DOSE2', 'GROWTH', 'STUDY']]

    return df
Exemplo n.º 6
0
def load_drug_set_fingerprints(drug_set='Combined_PubChem', ncols=None, usecols=None,
                               scaling=None, imputing=None, add_prefix=False):
    fps = ['PFP', 'ECFP']
    usecols_all = usecols
    df_merged = None
    for fp in fps:
        path = get_file(DATA_URL + '{}_dragon7_{}.tsv'.format(drug_set, fp))
        df_cols = pd.read_csv(path, engine='c', sep='\t', nrows=0, skiprows=1, header=None)
        total = df_cols.shape[1] - 1
        if usecols_all is not None:
            usecols = [x.replace(fp+'.', '') for x in usecols_all]
            usecols = [int(x) for x in usecols if x.isdigit()]
            usecols = [x for x in usecols if x in df_cols.columns]
            if usecols[0] != 0:
                usecols = [0] + usecols
            df_cols = df_cols.loc[:, usecols]
        elif ncols and ncols < total:
            usecols = np.random.choice(total, size=ncols, replace=False)
            usecols = np.append([0], np.add(sorted(usecols), 1))
            df_cols = df_cols.iloc[:, usecols]

        dtype_dict = dict((x, np.float32) for x in df_cols.columns[1:])
        df = pd.read_csv(path, engine='c', sep='\t', skiprows=1, header=None,
                         usecols=usecols, dtype=dtype_dict)
        df.columns = ['{}.{}'.format(fp, x) for x in df.columns]

        col1 = '{}.0'.format(fp)
        df1 = pd.DataFrame(df.loc[:, col1])
        df1.rename(columns={col1: 'Drug'}, inplace=True)

        df2 = df.drop(col1, 1)
        if add_prefix:
            df2 = df2.add_prefix('dragon7.')

        df2 = candle.drop_impute_and_scale_dataframe(df2, scaling, imputing, dropna=None)

        df = pd.concat([df1, df2], axis=1)

        df_merged = df if df_merged is None else df_merged.merge(df)

    return df_merged
Exemplo n.º 7
0
def load_aggregated_single_response(target='AUC', min_r2_fit=0.3, max_ec50_se=3, combo_format=False, rename=True):
    path = get_file(DATA_URL + 'combined_single_response_agg')

    df = global_cache.get(path)
    if df is None:
        df = pd.read_csv(path, engine='c', sep='\t',
                         dtype={'SOURCE': str, 'CELL': str, 'DRUG': str, 'STUDY': str,
                                'AUC': np.float32, 'IC50': np.float32,
                                'EC50': np.float32, 'EC50se': np.float32,
                                'R2fit': np.float32, 'Einf': np.float32,
                                'HS': np.float32, 'AAC1': np.float32,
                                'AUC1': np.float32, 'DSS1': np.float32})
        global_cache[path] = df

    total = len(df)

    df = df[(df['R2fit'] >= min_r2_fit) & (df['EC50se'] <= max_ec50_se)]
    df = df[['SOURCE', 'CELL', 'DRUG', target, 'STUDY']]
    df = df[~df[target].isnull()]

    logger.info('Loaded %d dose independent response samples (filtered by EC50se <= %f & R2fit >=%f from a total of %d).', len(df), max_ec50_se, min_r2_fit, total)

    if combo_format:
        df = df.rename(columns={'DRUG': 'DRUG1'})
        df['DRUG2'] = np.nan
        df['DRUG2'] = df['DRUG2'].astype(object)
        df = df[['SOURCE', 'CELL', 'DRUG1', 'DRUG2', target, 'STUDY']]
        if rename:
            df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample',
                                    'DRUG1': 'Drug1', 'DRUG2': 'Drug2', 'STUDY': 'Study'})
    else:
        if rename:
            df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample',
                                    'DRUG': 'Drug', 'STUDY': 'Study'})

    return df
Exemplo n.º 8
0
def load_cell_rnaseq(ncols=None,
                     scaling='std',
                     imputing='mean',
                     add_prefix=True,
                     use_landmark_genes=False,
                     use_filtered_genes=False,
                     feature_subset=None,
                     preprocess_rnaseq=None,
                     embed_feature_source=False,
                     sample_set=None,
                     index_by_sample=False):

    if use_landmark_genes:
        filename = 'combined_rnaseq_data_lincs1000'
    elif use_filtered_genes:
        filename = 'combined_rnaseq_data_filtered'
    else:
        filename = 'combined_rnaseq_data'

    if preprocess_rnaseq and preprocess_rnaseq != 'none':
        scaling = None
        filename += ('_' + preprocess_rnaseq)  # 'source_scale' or 'combat'

    path = get_file(DATA_URL + filename)
    df_cols = pd.read_csv(path, engine='c', sep='\t', nrows=0)
    total = df_cols.shape[1] - 1  # remove Sample column
    if 'Cancer_type_id' in df_cols.columns:
        total -= 1
    usecols = None
    if ncols and ncols < total:
        usecols = np.random.choice(total, size=ncols, replace=False)
        usecols = np.append([0], np.add(sorted(usecols), 2))
        df_cols = df_cols.iloc[:, usecols]
    if feature_subset:
        with_prefix = lambda x: 'rnaseq.' + x if add_prefix else x
        usecols = [0] + [
            i for i, c in enumerate(df_cols.columns)
            if with_prefix(c) in feature_subset
        ]
        df_cols = df_cols.iloc[:, usecols]

    dtype_dict = dict((x, np.float32) for x in df_cols.columns[1:])
    df = pd.read_csv(path,
                     engine='c',
                     sep='\t',
                     usecols=usecols,
                     dtype=dtype_dict)
    if 'Cancer_type_id' in df.columns:
        df.drop('Cancer_type_id', axis=1, inplace=True)

    prefixes = df['Sample'].str.extract('^([^.]*)',
                                        expand=False).rename('Source')
    sources = prefixes.drop_duplicates().reset_index(drop=True)
    df_source = pd.get_dummies(sources, prefix='rnaseq.source', prefix_sep='.')
    df_source = pd.concat([sources, df_source], axis=1)

    df1 = df['Sample']
    if embed_feature_source:
        df_sample_source = pd.concat([df1, prefixes], axis=1)
        df1 = df_sample_source.merge(df_source, on='Source',
                                     how='left').drop('Source', axis=1)
        logger.info(
            'Embedding RNAseq data source into features: %d additional columns',
            df1.shape[1] - 1)

    df2 = df.drop('Sample', 1)
    if add_prefix:
        df2 = df2.add_prefix('rnaseq.')

    df2 = candle.drop_impute_and_scale_dataframe(df2, scaling, imputing)

    df = pd.concat([df1, df2], axis=1)

    # scaling needs to be done before subsampling
    if sample_set:
        chosen = df['Sample'].str.startswith(sample_set)
        df = df[chosen].reset_index(drop=True)

    if index_by_sample:
        df = df.set_index('Sample')

    logger.info('Loaded combined RNAseq data: %s', df.shape)

    return df
Exemplo n.º 9
0
def load_cell_metadata():
    path = get_file(DATA_URL + 'cl_metadata')
    df = pd.read_csv(path, sep='\t')
    return df
Exemplo n.º 10
0
def load_drug_info():
    path = get_file(DATA_URL + 'drug_info')
    df = pd.read_csv(path, sep='\t', dtype=object)
    df['PUBCHEM'] = 'PubChem.CID.' + df['PUBCHEM']
    return df