Exemplo n.º 1
0
    def vjp(g):
        if np.ndim(g) == nd:
            # add axis if gradient was along one axis only
            g = g[np.newaxis]

        # accumulate gradient
        out = np.zeros(x_shape, dtype=x_dtype)

        for i, a in enumerate(axis):
            # swap gradient axis to the front
            g_swap = np.swapaxes(g[i], 0, a)[:, np.newaxis]

            out_axis = np.concatenate(
                (
                    -g_swap[0] - 0.5 * g_swap[1],
                    g_swap[0] - 0.5 * g_swap[2],
                    (-1.0) * np.gradient(g_swap, axis=0)[2:-2, 0],
                    0.5 * g_swap[-3] - g_swap[-1],
                    0.5 * g_swap[-2] + g_swap[-1],
                ),
                axis=0,
            )

            out = out + np.swapaxes(out_axis, 0, a)

        return out
Exemplo n.º 2
0
def grad_gradient(ans, x, *vargs, **kwargs):
    axis = kwargs.pop("axis", None)
    if vargs or kwargs:
        raise NotImplementedError(
            "The only optional argument currently supported for np.gradient " "is axis."
        )
    if axis is None:
        axis = range(np.ndim(x))
    elif type(axis) is int:
        axis = [axis]
    else:
        axis = list(axis)

    x_dtype = x.dtype
    x_shape = x.shape
    nd = np.ndim(x)

    def vjp(g):
        if np.ndim(g) == nd:
            # add axis if gradient was along one axis only
            g = g[np.newaxis]

        # accumulate gradient
        out = np.zeros(x_shape, dtype=x_dtype)

        for i, a in enumerate(axis):
            # swap gradient axis to the front
            g_swap = np.swapaxes(g[i], 0, a)[:, np.newaxis]

            out_axis = np.concatenate(
                (
                    -g_swap[0] - 0.5 * g_swap[1],
                    g_swap[0] - 0.5 * g_swap[2],
                    (-1.0) * np.gradient(g_swap, axis=0)[2:-2, 0],
                    0.5 * g_swap[-3] - g_swap[-1],
                    0.5 * g_swap[-2] + g_swap[-1],
                ),
                axis=0,
            )

            out = out + np.swapaxes(out_axis, 0, a)

        return out

    return vjp
Exemplo n.º 3
0
def unbroadcast(x, target_meta, broadcast_idx=0):
    target_shape, target_ndim, _, _ = target_meta
    while np.ndim(x) > target_ndim:
        x = np.sum(x, axis=broadcast_idx)
    for axis, size in enumerate(target_shape):
        if size == 1:
            x = np.sum(x, axis=axis, keepdims=True)
    if np.iscomplexobj(x) and not target_iscomplex:
        x = np.real(x)
    return x
Exemplo n.º 4
0
def _unpad(array, width):
    if np.isscalar(width):
        width = [[width, width]]
    elif np.shape(width) == (1,):
        width = [np.concatenate((width, width))]
    elif np.shape(width) == (2,):
        width = [width]
    if np.shape(width)[0] == 1:
        width = np.repeat(width, np.ndim(array), 0)
    idxs = tuple(slice(l, -u or None) for l, u in width)
    return array[idxs]
Exemplo n.º 5
0
def _block_default(arrays):
    import unumpy as np

    rec = _Recurser(recurse_if=lambda x: type(x) is list)

    list_ndim = None
    any_empty = False
    for index, value, entering in rec.walk(arrays):
        if type(value) is tuple:
            # not strictly necessary, but saves us from:
            #  - more than one way to do things - no point treating tuples like
            #    lists
            #  - horribly confusing behaviour that results when tuples are
            #    treated like ndarray
            raise TypeError(
                "{} is a tuple. "
                "Only lists can be used to arrange blocks, and np.block does "
                "not allow implicit conversion from tuple to ndarray.".format(
                    index))
        if not entering:
            curr_depth = len(index)
        elif len(value) == 0:
            curr_depth = len(index) + 1
            any_empty = True
        else:
            continue

        if list_ndim is not None and list_ndim != curr_depth:
            raise ValueError(
                "List depths are mismatched. First element was at depth {}, "
                "but there is an element at depth {} ({})".format(
                    list_ndim, curr_depth, index))
        list_ndim = curr_depth

        # convert all the arrays to ndarrays
        arrays = rec.map_reduce(arrays, f_map=asarray, f_reduce=list)

        elem_ndim = rec.map_reduce(arrays,
                                   f_map=lambda xi: np.ndim(xi),
                                   f_reduce=builtins.max)
        ndim = builtins.max(list_ndim, elem_ndim)
        first_axis = ndim - list_ndim
        arrays = rec.map_reduce(arrays,
                                f_map=lambda xi: _atleast_xd(xi, ndim),
                                f_reduce=list)

        return rec.map_reduce(
            arrays,
            f_reduce=lambda xs, axis: concatenate(list(xs), axis=axis - 1),
            f_kwargs=lambda axis: dict(axis=axis + 1),
            axis=first_axis,
        )
Exemplo n.º 6
0
def matmul_adjoint_0(B, G, A_meta, B_ndim):
    G_ndim = np.ndim(G)
    if G_ndim == 0:  # A_ndim == B_ndim == 1
        return unbroadcast(G * B, A_meta)
    _, A_ndim, _, _ = A_meta
    if A_ndim == 1:
        G = np.expand_dims(G, G_ndim - 1)
    if B_ndim == 1:  # The result we need is an outer product
        B = np.expand_dims(B, 0)
        G = np.expand_dims(G, G_ndim)
    else:  # We need to swap the last two axes of B
        B = np.swapaxes(B, B_ndim - 2, B_ndim - 1)
    result = np.matmul(G, B)
    return unbroadcast(result, A_meta)
Exemplo n.º 7
0
def matmul_adjoint_1(A, G, A_ndim, B_meta):
    G_ndim = np.ndim(G)
    if G_ndim == 0:  # A_ndim == B_ndim == 1
        return unbroadcast(G * A, B_meta)
    _, B_ndim, _, _ = B_meta
    B_is_vec = B_ndim == 1
    if B_is_vec:
        G = np.expand_dims(G, G_ndim)
    if A_ndim == 1:  # The result we need is an outer product
        A = np.expand_dims(A, 1)
        G = np.expand_dims(G, G_ndim - 1)
    else:  # We need to swap the last two axes of A
        A = np.swapaxes(A, A_ndim - 2, A_ndim - 1)
    result = np.matmul(A, G)
    if B_is_vec:
        result = np.squeeze(result, G_ndim - 1)
    return unbroadcast(result, B_meta)
Exemplo n.º 8
0
def metadata(A):
    return np.shape(A), np.ndim(A), A.dtype, np.iscomplexobj(A)
Exemplo n.º 9
0
def matmul_vjp_1(ans, A, B):
    A_ndim = np.ndim(A)
    B_meta = metadata(B)
    return lambda g: matmul_adjoint_1(A, g, A_ndim, B_meta)
Exemplo n.º 10
0
def matmul_vjp_0(ans, A, B):
    A_meta = metadata(A)
    B_ndim = np.ndim(B)
    return lambda g: matmul_adjoint_0(B, g, A_meta, B_ndim)
Exemplo n.º 11
0
    def to(self, x, grad_variables=None, jacobian=False):
        """
        Calculate the JVP or Jacobian matrix of self to x.

        Parameters
        ----------
        x : JVPDiffArray
            The denominator in derivative.
        grad_variables : JVPDiffArray
            Gradient assigned to the x.
        jacobian : bool
            Flag identifies whether to calculate the jacobian logo.
            If set ``True``, it will return jacobian matrix instead of jvp.

        Examples
        --------
        >>> with ua.set_backend(udiff.DiffArrayBackend(numpy_backend, mode="jvp"), coerce=True):
        ...
        ...    x1 = np.array([2])
        ...    x2 = np.array([5])
        ...    y = np.log(x1) + x1 * x2 - np.sin(x2)
        ...    x1_diff = y.to(x1)
        ...    print(np.allclose(x1_diff, [5.5]))
        True
        """
        if self._jvp and x not in self._jvp:
            raise ValueError("Please check if the base is correct.")

        if jacobian:
            if self._jacobian is None:
                self._jacobian = {}

            if x not in self._jacobian:
                self._jacobian[x] = {}
                for position in itertools.product(
                        *[range(i) for i in np.shape(x)]):
                    grad_variables = np.zeros_like(x)
                    grad_variables.value[position] = 1
                    self._jacobian[x][position] = self._forward(
                        x, grad_variables)

            old_axes = tuple(range(np.ndim(self) + np.ndim(x)))
            new_axes = old_axes[np.ndim(x):] + old_axes[:np.ndim(x)]
            self._jacobian[x] = np.transpose(
                np.reshape(
                    np.stack(self._jacobian[x].values()),
                    np.shape(x) + np.shape(self),
                ),
                new_axes,
            )
            return self._jacobian[x]
        else:
            if self._diff is None:
                self._diff = {}

            if x not in self._diff:
                if grad_variables is None:
                    grad_variables = np.ones_like(self)

                self._diff[x] = self._forward(x, grad_variables)

            return self._diff[x]