Exemplo n.º 1
0
from upcall.accuracy_measure import map_build_day_file
import glob, os
from upcall.config import Config
from upcall.full_process import full_process_interfaceDSP, full_process_interface
from upcall.RunDetectorDSPdependency import MakeSoundStream
#import matplotlib.pyplot as plt

# parameter
config = Config()

DATA_DIR = r'/home/ys587/__Data'

# truth data:
TruthFolder = r'/home/ys587/__Data/__TruthLabelVAPlusStAndrew'
TruthFolder = r'/cache/kpalmer/quick_ssd/data/dclmmpa2013/LogsWithNewSNR/RavenST/NOPPSet2'
day_file_map = map_build_day_file(TruthFolder)

# testing sound stream of St Andrew DCL
SoundPath = os.path.join(DATA_DIR, r'DCL_St_Andrew/Sound_3_days')
day_list = sorted(glob.glob(os.path.join(TruthFolder + '/', '*')))

SoundFileLoc = '/cache/kpalmer/quick_ssd/data/dclmmpa2013/Testing/Upcalls_NOPPset2'
file_days = os.listdir(SoundFileLoc)

file_days = [os.path.join(SoundFileLoc, s) for s in file_days]
# Make soundstream of all folders
sample_stream = MakeSoundStream(file_days)

# Test
expt_label = 'Test detection'
classifier_file = r'weights-improvement-38-0.8361.hdf5'
Exemplo n.º 2
0
def calc_avg_prec(truth_folder, seltab_detect_path, config):
    map_day_file = map_build_day_file(truth_folder)
    day_list = sorted(glob.glob(os.path.join(
        seltab_detect_path, '*.txt')))  # find selection table for all days

    # turn off pd "cope of a slice" warning
    pd.set_option('mode.chained_assignment', None)

    df_detect_list = []
    df_truth_list = []
    for dd in day_list:
        basename = os.path.basename(dd)
        print('Current day: ' + basename)
        #print('Corresponding truth file: ', end='')
        date_str = get_date_str(basename)
        truth_file = map_day_file[date_str]
        #print(truth_file)

        # (a) dd, the detection file versus (b) truth_file
        df_detect0 = pd.read_table(dd)
        df_truth0 = pd.read_table(truth_file)

        # sort by the column "Begin Time (s)"
        df_detect0 = df_detect0.sort_values(r'Begin Time (s)')
        df_detect0 = df_detect0.reset_index(drop=True)
        df_detect0[r'Center Time (s)'] = 0.5 * df_detect0[
            r'Begin Time (s)'] + 0.5 * df_detect0[r'End Time (s)']
        df_detect0[r'date'] = date_str
        df_detect_list.append(df_detect0)

        df_truth0 = df_truth0.sort_values(r'Begin Time (s)')
        df_truth0 = df_truth0.reset_index(drop=True)
        df_truth0[r'Center Time (s)'] = 0.5 * df_truth0[
            r'Begin Time (s)'] + 0.5 * df_truth0[r'End Time (s)']
        df_truth0[r'date'] = date_str
        df_truth_list.append(df_truth0)

    df_detect = pd.concat(df_detect_list)
    del df_detect_list
    df_truth = pd.concat(df_truth_list)
    del df_truth_list
    #df_truth = df_truth.reset_index(drop=True)

    #dects = []
    #[dects.append(row) for index, row in df_detect.iterrows()]
    gts = []
    [gts.append(row) for index, row in df_truth.iterrows()]

    # dects => df_detect; gts => df_truth
    npos = df_truth.shape[0]
    # sort detections by decreasing confidence
    df_detect = df_detect.sort_values(by=['Score'],
                                      ascending=False)  # sort by score
    TP = np.zeros(df_detect.shape[0])
    FP = np.zeros(df_detect.shape[0])

    det0 = Counter([cc[r'date'] for cc in gts])
    det = {}
    for key, val in det0.items():
        det[key] = np.zeros(val)

    for dd in range(df_detect.shape[0]):
        # for dd in range(500):
        df_truth_same_date = df_truth.loc[
            (df_truth['date'] == df_detect.iloc[dd]['date']) &
            (np.abs(df_truth[r'Center Time (s)'] -
                    df_detect.iloc[dd][r'Center Time (s)']) < config.SEP_THRE)]
        df_truth_same_date[r'delta time'] = np.abs(
            df_truth_same_date[r'Center Time (s)'] -
            df_detect.iloc[dd][r'Center Time (s)'])
        if dd % 200 == 0:
            print('#', end='', flush=True)

        hit_num = df_truth_same_date.shape[0]
        if hit_num > 0:
            if hit_num == 1:
                ind_hit = df_truth_same_date.index[0]
            else:  # >= 2
                ind_hit = df_truth_same_date[r'delta time'].idxmin(axis=0)

            if det[df_detect.iloc[dd]['date']][ind_hit] == 0:
                TP[dd] = 1
                det[df_detect.iloc[dd]['date']][ind_hit] = 1
            else:
                FP[dd] = 1
        else:
            FP[dd] = 1
    print('')

    acc_FP = np.cumsum(FP)
    acc_TP = np.cumsum(TP)
    rec = acc_TP / npos
    prec = np.divide(acc_TP, (acc_FP + acc_TP))

    [ap_11pt, mpre, mrec, _] = ElevenPointInterpolatedAP(rec, prec)
    print('AP_11pt is: ' + str(ap_11pt))
    [ap_avg, mpre, mrec, _] = CalculateAveragePrecision(rec, prec)
    print('AP_avg is: ' + str(ap_avg))
    # plt.plot(mrec, mpre)

    return ap_11pt, ap_avg, mpre, mrec
Exemplo n.º 3
0
from upcall.config import Config
from upcall.full_process import full_process_interfaceDSP, full_process_interface
from upcall.RunDetectorDSPdependency import MakeSoundStream
#import matplotlib.pyplot as plt

start_time = time.time()

# parameter
config = Config()

DATA_DIR = r'/home/ys587/__Data'

# truth data:
#TruthFolder = r'/home/ys587/__Data/__TruthLabelVAPlusStAndrew'
truth_folder = os.path.join(DATA_DIR, 'DCL_St_Andrew/Sound_3_days_seltab')
day_file_map = map_build_day_file(truth_folder)

# testing sound stream of St Andrew DCL
#SoundPath = os.path.join(DATA_DIR, r'DCL_St_Andrew/Sound_3_days_short_test')
SoundPath = os.path.join(DATA_DIR, r'DCL_St_Andrew/Sound_3_days')
#SoundPath = '/cache/kpalmer/quick_ssd/data/dclmmpa2013/Testing/Upcalls_NOPPset2'
SoundFileLoc = file_days = os.listdir(SoundPath)
file_days = [os.path.join(SoundPath, s) for s in file_days]
# Make soundstream of all folders
sample_stream = MakeSoundStream(file_days)

# Test
expt_label = 'evaluate'
#classifier_file = r'weights-improvement-38-0.8361.hdf5'
#classifier_path = r'/home/ys587/__Data/DetectionTestCase/'
classifier_path = '/home/ys587/tensorflow3/__ModelOutput/__DCLDE2018/ModelSearch201805_DCL/LeNet_Dropout_Layer_p2/weights-improvement-56-0.9133.hdf5'
Exemplo n.º 4
0
Created on 7/11/19
@author: atoultaro
"""
import os
import glob

from upcall.config import Config
from upcall.accuracy_measure import calc_TP_FP_FN, map_build_day_file, \
    get_date_str

result_path = os.path.join(
    '/home/ys587/__ExptResult/cv_lenet_dropout_conv_train_Data_2_augment',
    '__full_data_large')

DATA_DIR = r'/home/ys587/__Data'  # Data
truth_folder = os.path.join(DATA_DIR, '__large_test_dataset/__truth_seltab')

config = Config(dataset='Data_2', model='lenet_dropout_conv')
config.NUM_RUNS = 1
for rr in range(config.NUM_RUNS):
    day_list = sorted(
        glob.glob(
            os.path.join(result_path, 'Run' + str(rr), '__TP_FN_FP',
                         '*.txt')))  # find selection table for all days
    print(rr)
    for dd in day_list:
        basename = os.path.basename(dd)
        map_day_file = map_build_day_file(truth_folder)
        truth_file = map_day_file[get_date_str(basename)]
        accu_result, _ = calc_TP_FP_FN(dd, truth_file, result_path,
                                       config)  # TP, FP, TP2, FN