Exemplo n.º 1
0
def run_feasibility(parcels,
                    parcel_price_callback,
                    parcel_use_allowed_callback,
                    residential_to_yearly=True):
    """
    Execute development feasibility on all parcels

    Parameters
    ----------
    parcels : DataFrame Wrapper
        The data frame wrapper for the parcel data
    parcel_price_callback : function
        A callback which takes each use of the pro forma and returns a series
        with index as parcel_id and value as yearly_rent
    parcel_use_allowed_callback : function
        A callback which takes each form of the pro forma and returns a series
        with index as parcel_id and value and boolean whether the form
        is allowed on the parcel
    residential_to_yearly : boolean (default true)
        Whether to use the cap rate to convert the residential price from total
        sales price per sqft to rent per sqft

    Returns
    -------
    Adds a table called feasibility to the sim object (returns nothing)
    """
    pf = sqftproforma.SqFtProForma()

    df = parcels.to_frame()

    # add prices for each use
    for use in pf.config.uses:
        df[use] = parcel_price_callback(use)

    # convert from cost to yearly rent
    if residential_to_yearly:
        df["residential"] *= pf.config.cap_rate

    print "Describe of the yearly rent by use"
    print df[pf.config.uses].describe()

    d = {}
    for form in pf.config.forms:
        print "Computing feasibility for form %s" % form
        d[form] = pf.lookup(form, df[parcel_use_allowed_callback(form)])

    far_predictions = pd.concat(d.values(), keys=d.keys(), axis=1)

    sim.add_table("feasibility", far_predictions)
Exemplo n.º 2
0
    def nonresidential_proforma(form, devtype_id, use, parking_rate):
        print form
        parcels = sim.get_table('parcels').to_frame()

        residential_to_yearly = False
        parcel_filter = settings['feasibility']['parcel_filter']
        #parcel_filter = None
        pfc = sqftproforma.SqFtProFormaConfig()
        pfc.forms = {form: {use: 1.0}}
        pfc.uses = [use]
        pfc.residential_uses = [False]
        pfc.parking_rates = {use: parking_rate}
        if use == 'retail':
            pfc.costs = {use: [160.0, 175.0, 200.0, 230.0]}
        elif use == 'industrial':
            pfc.costs = {use: [140.0, 175.0, 200.0, 230.0]}
        else:  #office
            pfc.costs = {use: [160.0, 175.0, 200.0, 230.0]}

        #Fees
        fee_schedule_devtype = fee_schedule[fee_schedule.development_type_id ==
                                            devtype_id]
        parcel_fee_schedule_devtype = pd.merge(parcel_fee_schedule,
                                               fee_schedule_devtype,
                                               left_on='fee_schedule_id',
                                               right_on='fee_schedule_id')
        parcel_fee_schedule_devtype[
            'development_fee_per_unit'] = parcel_fee_schedule_devtype.development_fee_per_unit_space_initial * parcel_fee_schedule_devtype.portion
        parcel_fees_processed = parcel_fee_schedule_devtype.groupby(
            'parcel_id').development_fee_per_unit.sum()
        fees = pd.Series(data=parcel_fees_processed,
                         index=parcels.index).fillna(0)

        pf = sqftproforma.SqFtProForma(pfc)
        fees = fees * pf.config.cap_rate

        return run_proforma_lookup(parcels,
                                   fees,
                                   pf,
                                   use,
                                   form,
                                   residential_to_yearly,
                                   parcel_filter=parcel_filter)
Exemplo n.º 3
0
def run_feasibility(parcels,
                    parcel_price_callback,
                    parcel_use_allowed_callback,
                    residential_to_yearly=True,
                    parcel_filter=None,
                    only_built=True,
                    forms_to_test=None,
                    config=None,
                    pass_through=[],
                    simple_zoning=False):
    """
    Execute development feasibility on all parcels

    Parameters
    ----------
    parcels : DataFrame Wrapper
        The data frame wrapper for the parcel data
    parcel_price_callback : function
        A callback which takes each use of the pro forma and returns a series
        with index as parcel_id and value as yearly_rent
    parcel_use_allowed_callback : function
        A callback which takes each form of the pro forma and returns a series
        with index as parcel_id and value and boolean whether the form
        is allowed on the parcel
    residential_to_yearly : boolean (default true)
        Whether to use the cap rate to convert the residential price from total
        sales price per sqft to rent per sqft
    parcel_filter : string
        A filter to apply to the parcels data frame to remove parcels from
        consideration - is typically used to remove parcels with buildings
        older than a certain date for historical preservation, but is
        generally useful
    only_built : boolean
        Only return those buildings that are profitable - only those buildings
        that "will be built"
    forms_to_test : list of strings (optional)
        Pass the list of the names of forms to test for feasibility - if set to
        None will use all the forms available in ProFormaConfig
    config : SqFtProFormaConfig configuration object.  Optional.  Defaults to
        None
    pass_through : list of strings
        Will be passed to the feasibility lookup function - is used to pass
        variables from the parcel dataframe to the output dataframe, usually
        for debugging
    simple_zoning: boolean, optional
        This can be set to use only max_dua for residential and max_far for
        non-residential.  This can be handy if you want to deal with zoning
        outside of the developer model.

    Returns
    -------
    Adds a table called feasibility to the sim object (returns nothing)
    """

    pf = sqftproforma.SqFtProForma(config) if config \
        else sqftproforma.SqFtProForma()

    df = parcels.to_frame()

    if parcel_filter:
        df = df.query(parcel_filter)

    # add prices for each use
    for use in pf.config.uses:
        # assume we can get the 80th percentile price for new development
        df[use] = parcel_price_callback(use)

    # convert from cost to yearly rent
    if residential_to_yearly:
        df["residential"] *= pf.config.cap_rate

    print "Describe of the yearly rent by use"
    print df[pf.config.uses].describe()

    d = {}
    forms = forms_to_test or pf.config.forms
    for form in forms:
        print "Computing feasibility for form %s" % form
        allowed = parcel_use_allowed_callback(form).loc[df.index]

        newdf = df[allowed]
        if simple_zoning:
            if form == "residential":
                # these are new computed in the effective max_dua method
                newdf["max_far"] = pd.Series()
                newdf["max_height"] = pd.Series()
            else:
                # these are new computed in the effective max_far method
                newdf["max_dua"] = pd.Series()
                newdf["max_height"] = pd.Series()

        d[form] = pf.lookup(form,
                            newdf,
                            only_built=only_built,
                            pass_through=pass_through)
        if residential_to_yearly and "residential" in pass_through:
            d[form]["residential"] /= pf.config.cap_rate

    far_predictions = pd.concat(d.values(), keys=d.keys(), axis=1)

    orca.add_table("feasibility", far_predictions)
Exemplo n.º 4
0
def run_feasibility(parcels, parcel_price_callback,
                    parcel_use_allowed_callback, residential_to_yearly=True,
                    parcel_filter=None, only_built=True, forms_to_test=None,
                    config=None, pass_through=[]):
    """
    Execute development feasibility on all parcels

    Parameters
    ----------
    parcels : DataFrame Wrapper
        The data frame wrapper for the parcel data
    parcel_price_callback : function
        A callback which takes each use of the pro forma and returns a series
        with index as parcel_id and value as yearly_rent
    parcel_use_allowed_callback : function
        A callback which takes each form of the pro forma and returns a series
        with index as parcel_id and value and boolean whether the form
        is allowed on the parcel
    residential_to_yearly : boolean (default true)
        Whether to use the cap rate to convert the residential price from total
        sales price per sqft to rent per sqft
    parcel_filter : string
        A filter to apply to the parcels data frame to remove parcels from
        consideration - is typically used to remove parcels with buildings
        older than a certain date for historical preservation, but is
        generally useful
    only_built : boolean
        Only return those buildings that are profitable - only those buildings
        that "will be built"
    forms_to_test : list of strings (optional)
        Pass the list of the names of forms to test for feasibility - if set to
        None will use all the forms available in ProFormaConfig
    config : SqFtProFormaConfig configuration object.  Optional.  Defaults to
        None
    pass_through : list of strings
        Will be passed to the feasibility lookup function - is used to pass
        variables from the parcel dataframe to the output dataframe, usually
        for debugging

    Returns
    -------
    Adds a table called feasibility to the sim object (returns nothing)
    """

    pf = sqftproforma.SqFtProForma(config) if config \
        else sqftproforma.SqFtProForma()

    df = parcels.to_frame()

    if parcel_filter:
        df = df.query(parcel_filter)
    #print df.loc[765403]
    #df.to_csv("select_parcels.csv")
    # add prices for each use
    for use in pf.config.uses:
        # assume we can get the 80th percentile price for new development
        df[use] = parcel_price_callback(use)

    # convert from cost to yearly rent
    if residential_to_yearly:
        df["residential"] *= pf.config.cap_rate

    print "Describe of the yearly rent by use"
    print df[pf.config.uses].describe()

    d = {}
    forms = forms_to_test or pf.config.forms
    for form in forms:
        print "Computing feasibility for form %s" % form
        allowed = parcel_use_allowed_callback(form).loc[df.index]       
        #allowed.to_csv(str(form) + "allow.csv")
        #df[allowed].to_csv(str(form) + "allow.csv")
        d[form] = pf.lookup(form, df[allowed], only_built=only_built,
                            pass_through=pass_through)
        #d[form].to_csv(str(form) + "dform.csv")
        if residential_to_yearly and "residential" in pass_through:
            d[form]["residential"] /= pf.config.cap_rate

    far_predictions = pd.concat(d.values(), keys=d.keys(), axis=1)
    far_predictions['residential'].to_csv("residential_far_prediction.csv")
    far_predictions['retail'].to_csv("retail_far_prediction.csv")
    far_predictions['office'].to_csv("office_far_prediction.csv")
    #far_predictions.to_csv("far_prediction.csv")
    far_predictions['residential'].max_profit = far_predictions['residential'].max_profit / np.power(far_predictions['residential'].max_profit_far*far_predictions['residential'].shape_area,1)
    far_predictions['industrial'].max_profit = far_predictions['industrial'].max_profit / np.power(far_predictions['industrial'].max_profit_far*far_predictions['industrial'].shape_area,1)
    far_predictions['retail'].max_profit = far_predictions['retail'].max_profit / np.power(far_predictions['retail'].max_profit_far*far_predictions['retail'].shape_area,1)
    far_predictions['office'].max_profit = far_predictions['office'].max_profit / np.power(far_predictions['office'].max_profit_far*far_predictions['office'].shape_area,1)
    #far_predictions['residential'].max_profit = np.divide(far_predictions['residential'].max_profit,far_predictions['residential'].max_dua)
    #far_predictions['residential'].max_profit[far_predictions['residential'].max_profit==-np.inf] = np.nan

    sim.add_table("feasibility", far_predictions)