Exemplo n.º 1
0
    x_train, y_train_c, y_train_r, x_dev, y_dev_c, y_dev_r, x_test = load_data_v4(
        data_path='data')

    print('Training Multi-Task MLP model ...')
    check_pointer = ModelCheckpoint(filepath='models/multi_task_mlp.hdf5',
                                    verbose=1,
                                    save_best_only=True,
                                    save_weights_only=True)
    early_stopping = EarlyStopping(patience=3)
    csv_logger = CSVLogger('logs/multi_task_mlp.log')
    mt_model = multi_task_mlp(sample_dim=x_train.shape[1])
    mt_model.fit({'mlp_input': x_train}, {
        'r_output': y_train_r,
        'c_output': y_train_c
    },
                 validation_data=([x_dev], [y_dev_r, y_dev_c]),
                 batch_size=128,
                 epochs=50,
                 verbose=1,
                 callbacks=[check_pointer, early_stopping, csv_logger])

    if submit_flag:
        print('Generate submission ...')
        mt_model.load_weights(filepath='models/multi_task_mlp.hdf5')
        results = mt_model.predict([x_test])[0].reshape(-1, 1)
        make_submission(result_path='submissions',
                        results=results,
                        model_name='Multi_Task_MLP')

    print('***** End UAI-CUP-2017 *****')
Exemplo n.º 2
0
    csv_logger = CSVLogger('logs/embedding_mlp.log')
    embedding_mlp_model = embedding_mlp(
        cont_feature_dim=x_train_cont_features.shape[1])
    embedding_mlp_model.fit(
        [
            x_train_day_of_week, x_train_create_hour, x_train_poi_points,
            x_train_cont_features
        ],
        y_train,
        batch_size=128,
        epochs=100,
        verbose=1,
        validation_data=([
            x_dev_day_of_week, x_dev_create_hour, x_dev_poi_points,
            x_dev_cont_features
        ], y_dev),
        callbacks=[check_pointer, early_stopping, csv_logger])

    if submit_flag:
        print('Generate submission ...')
        embedding_mlp_model.load_weights(filepath='models/embedding_mlp.hdf5')
        results = embedding_mlp_model.predict([
            x_test_day_of_week, x_test_create_hour, x_test_poi_points,
            x_dev_cont_features
        ]).reshape(-1, 1)
        make_submission(result_path='submissions',
                        results=results,
                        model_name='Embedding_MLP')

    print('***** End UAI-CUP-2017 *****')
Exemplo n.º 3
0
    return model


if __name__ == '__main__':

    submit_flag = True if sys.argv[1] == 'submit' else False

    print('***** Start UAI-CUP-2017 *****')
    print('Loading data ...')
    x_train, y_train, x_dev, y_dev, x_test = load_data_v2(data_path='data')

    print('Training XGBoost Regression model ...')

    xgb_model = xgb()

    eval_set = [(x_dev, y_dev)]
    xgb_model.fit(x_train, y_train,
                  early_stopping_rounds=3,
                  eval_metric='mae',
                  eval_set=eval_set,
                  verbose=True)
    plot_importance(xgb_model)
    pyplot.show()

    if submit_flag:
        print('Generate submission ...')
        results = xgb_model.predict(x_test).reshape(-1, 1)
        make_submission(result_path='submissions', results=results, model_name='xgboost')

    print('***** End UAI-CUP-2017 *****')
Exemplo n.º 4
0
    # r_check_pointer = ModelCheckpoint(filepath='models/r_phase_mlp.hdf5', verbose=1, save_best_only=True,
    #                                   save_weights_only=True)
    # r_csv_logger = CSVLogger('logs/r_phase_mlp.log')
    r_model = regression_mlp(sample_dim=x_train_r.shape[1])
    # r_model.fit({'mlp_input': x_train_r},
    #             {'r_output': y_train_r},
    #             validation_split=0.1,
    #             batch_size=128, epochs=50, verbose=1,
    #             callbacks=[r_check_pointer, early_stopping, r_csv_logger])

    if submit_flag:
        print('Generate submission ...')

        c_model.load_weights(filepath='models/c_phase_mlp.hdf5')
        r_model.load_weights(filepath='models/r_phase_mlp.hdf5')
        c_results = c_model.predict([x_test]).reshape(-1, 1)
        r_results = r_model.predict([x_test]).reshape(-1, 1)

        results = list()
        for item in zip(c_results, r_results):
            if item[0][0] > 0.5:
                results.append(item[1][0])
            else:
                results.append(1.0)
        results = np.array(results).reshape(-1, 1)
        make_submission(result_path='submissions',
                        results=results,
                        model_name='Two_Phase_MLP')

    print('***** End UAI-CUP-2017 *****')
Exemplo n.º 5
0
if __name__ == '__main__':

    submit_flag = True if sys.argv[1] == 'submit' else False

    print('***** Start UAI-CUP-2017 *****')
    print('Loading data ...')
    x_train, y_train, x_dev, y_dev, x_test = load_data_v2(data_path='data')

    print('Training Extra Trees Regression model ...')

    etr = extra_trees()
    etr.fit(x_train, y_train)
    etr_y_train = etr.predict(x_train).reshape(-1, 1)
    etr_y_dev = etr.predict(x_dev).reshape(-1, 1)

    train_mae = mean_absolute_error(y_train, etr_y_train)
    print('Train MAE:', train_mae)

    dev_mae = mean_absolute_error(y_dev, etr_y_dev)
    print('Dev MAE:', dev_mae)

    if submit_flag:
        print('Generate submission ...')
        results = etr.predict(x_test).reshape(-1, 1)
        make_submission(result_path='submissions',
                        results=results,
                        model_name='Extra_Trees')

    print('***** End UAI-CUP-2017 *****')
Exemplo n.º 6
0
if __name__ == '__main__':

    submit_flag = True if sys.argv[1] == 'submit' else False

    print('***** Start UAI-CUP-2017 *****')
    print('Loading data ...')
    x_train, y_train, x_dev, y_dev, x_test = load_data_v2(data_path='data')

    print('Training KNN Regression model ...')

    knn_reg = KNeighborsRegressor()
    knn_reg.fit(x_train, y_train)
    knn_y_train = knn_reg.predict(x_train).reshape(-1, 1)
    knn_y_dev = knn_reg.predict(x_dev).reshape(-1, 1)

    train_mae = mean_absolute_error(y_train, knn_y_train)
    print('Train MAE:', train_mae)

    dev_mae = mean_absolute_error(y_dev, knn_y_dev)
    print('Dev MAE:', dev_mae)

    if submit_flag:
        print('Generate submission ...')
        results = knn_reg.predict(x_test).reshape(-1, 1)
        make_submission(result_path='submissions',
                        results=results,
                        model_name='KNN')

    print('***** End UAI-CUP-2017 *****')