Exemplo n.º 1
0
def addmosaic_video(opt,netS):
    path = opt.media_path
    fps,imagepaths = video_init(opt,path)
    # get position
    positions = []
    for i,imagepath in enumerate(imagepaths,1):
        img = impro.imread(os.path.join('./tmp/video2image',imagepath))
        mask,x,y,area = runmodel.get_ROI_position(img,netS,opt)
        positions.append([x,y,area])      
        cv2.imwrite(os.path.join('./tmp/ROI_mask',imagepath),mask)
        print('\r','Find ROI location:'+str(i)+'/'+str(len(imagepaths)),util.get_bar(100*i/len(imagepaths),num=40),end='')
    print('\nOptimize ROI locations...')
    mask_index = filt.position_medfilt(np.array(positions), 7)

    # add mosaic
    for i in range(len(imagepaths)):
        mask = impro.imread(os.path.join('./tmp/ROI_mask',imagepaths[mask_index[i]]),'gray')
        img = impro.imread(os.path.join('./tmp/video2image',imagepaths[i]))
        if impro.mask_area(mask)>100:    
            img = mosaic.addmosaic(img, mask, opt)
        cv2.imwrite(os.path.join('./tmp/addmosaic_image',imagepaths[i]),img)
        print('\r','Add Mosaic:'+str(i+1)+'/'+str(len(imagepaths)),util.get_bar(100*i/len(imagepaths),num=40),end='')
    print()
    ffmpeg.image2video( fps,
                        './tmp/addmosaic_image/output_%05d.'+opt.tempimage_type,
                        './tmp/voice_tmp.mp3',
                         os.path.join(opt.result_dir,os.path.splitext(os.path.basename(path))[0]+'_add.mp4'))
Exemplo n.º 2
0
def addmosaic_video(opt):
    net = loadmodel.unet(opt)
    path = opt.media_path
    util.clean_tempfiles()
    fps = ffmpeg.get_video_infos(path)[0]
    ffmpeg.video2voice(path, './tmp/voice_tmp.mp3')
    ffmpeg.video2image(path,
                       './tmp/video2image/output_%05d.' + opt.tempimage_type)
    imagepaths = os.listdir('./tmp/video2image')
    imagepaths.sort()

    # get position
    positions = []
    for imagepath in imagepaths:
        print('Find ROI location:', imagepath)
        img = impro.imread(os.path.join('./tmp/video2image', imagepath))
        mask, x, y, area = runmodel.get_ROI_position(img, net, opt)
        positions.append([x, y, area])
        cv2.imwrite(os.path.join('./tmp/ROI_mask', imagepath), mask)
    print('Optimize ROI locations...')
    mask_index = filt.position_medfilt(np.array(positions), 7)

    # add mosaic
    print('Add mosaic to images...')
    for i in range(len(imagepaths)):
        mask = impro.imread(
            os.path.join('./tmp/ROI_mask', imagepaths[mask_index[i]]))
        img = impro.imread(os.path.join('./tmp/video2image', imagepaths[i]))
        img = mosaic.addmosaic(img, mask, opt)
        cv2.imwrite(os.path.join('./tmp/addmosaic_image', imagepaths[i]), img)

    ffmpeg.image2video(
        fps, './tmp/addmosaic_image/output_%05d.' + opt.tempimage_type,
        './tmp/voice_tmp.mp3',
        os.path.join(opt.result_dir,
                     os.path.splitext(os.path.basename(path))[0] + '_add.mp4'))
Exemplo n.º 3
0
def get_roi_positions(opt, netS, imagepaths, savemask=True):
    # resume
    continue_flag = False
    if os.path.isfile(os.path.join(opt.temp_dir, 'step.json')):
        step = util.loadjson(os.path.join(opt.temp_dir, 'step.json'))
        resume_frame = int(step['frame'])
        if int(step['step']) > 2:
            mask_index = np.load(os.path.join(opt.temp_dir, 'mask_index.npy'))
            return mask_index
        if int(step['step']) >= 2 and resume_frame > 0:
            pre_positions = np.load(
                os.path.join(opt.temp_dir, 'roi_positions.npy'))
            continue_flag = True
            imagepaths = imagepaths[resume_frame:]

    positions = []
    t1 = time.time()
    if not opt.no_preview:
        cv2.namedWindow('mask', cv2.WINDOW_NORMAL)
    print('Step:2/4 -- Find mosaic location')

    img_read_pool = Queue(4)

    def loader(imagepaths):
        for imagepath in imagepaths:
            img_origin = impro.imread(
                os.path.join(opt.temp_dir + '/video2image', imagepath))
            img_read_pool.put(img_origin)

    t = Thread(target=loader, args=(imagepaths, ))
    t.daemon = True
    t.start()

    for i, imagepath in enumerate(imagepaths, 1):
        img_origin = img_read_pool.get()
        mask, x, y, size, area = runmodel.get_ROI_position(
            img_origin, netS, opt)
        positions.append([x, y, area])
        if savemask:
            t = Thread(target=cv2.imwrite,
                       args=(
                           os.path.join(opt.temp_dir + '/ROI_mask', imagepath),
                           mask,
                       ))
            t.start()
        if i % 1000 == 0:
            save_positions = np.array(positions)
            if continue_flag:
                save_positions = np.concatenate(
                    (pre_positions, save_positions), axis=0)
            np.save(os.path.join(opt.temp_dir, 'roi_positions.npy'),
                    save_positions)
            step = {'step': 2, 'frame': i + resume_frame}
            util.savejson(os.path.join(opt.temp_dir, 'step.json'), step)

        #preview result and print
        if not opt.no_preview:
            cv2.imshow('mask', mask)
            cv2.waitKey(1) & 0xFF
        t2 = time.time()
        print('\r',
              str(i) + '/' + str(len(imagepaths)),
              util.get_bar(100 * i / len(imagepaths), num=35),
              util.counttime(t1, t2, i, len(imagepaths)),
              end='')

    if not opt.no_preview:
        cv2.destroyAllWindows()

    print('\nOptimize ROI locations...')
    if continue_flag:
        positions = np.concatenate((pre_positions, positions), axis=0)
    mask_index = filt.position_medfilt(np.array(positions), 7)
    step = {'step': 3, 'frame': 0}
    util.savejson(os.path.join(opt.temp_dir, 'step.json'), step)
    np.save(os.path.join(opt.temp_dir, 'roi_positions.npy'), positions)
    np.save(os.path.join(opt.temp_dir, 'mask_index.npy'), np.array(mask_index))

    return mask_index
        os.path.join('./tmp/video2image', imagepaths[0]))
    mask_avg = np.zeros((impro.resize(img_ori_example, 128)).shape[:2])
    for imagepath in imagepaths:
        imagepath = os.path.join('./tmp/video2image', imagepath)
        print('Find ROI location:', imagepath)
        img = impro.imread(imagepath)
        x, y, size, mask = runmodel.get_mosaic_position(img,
                                                        net,
                                                        opt,
                                                        threshold=64)
        cv2.imwrite(
            os.path.join('./tmp/ROI_mask', os.path.basename(imagepath)), mask)
        positions.append([x, y, size])
        mask_avg = mask_avg + mask
    print('Optimize ROI locations...')
    mask_index = filt.position_medfilt(np.array(positions), 13)

    mask = np.clip(mask_avg / len(imagepaths), 0, 255).astype('uint8')
    mask = impro.mask_threshold(mask, 20, 32)
    x, y, size, area = impro.boundingSquare(mask, Ex_mul=1.5)
    rat = min(img_ori_example.shape[:2]) / 128.0
    x, y, size = int(rat * x), int(rat * y), int(rat * size)
    cv2.imwrite(os.path.join('./tmp/ROI_mask_check', 'test_show.png'), mask)
    if size != 0:
        mask_path = './dataset/' + os.path.splitext(
            os.path.basename(path))[0] + '/mask'
        ori_path = './dataset/' + os.path.splitext(
            os.path.basename(path))[0] + '/ori'
        mosaic_path = './dataset/' + os.path.splitext(
            os.path.basename(path))[0] + '/mosaic'
        os.makedirs('./dataset/' +
Exemplo n.º 5
0
def addmosaic_video(opt, netS):
    path = opt.media_path
    fps, imagepaths = video_init(opt, path)[:2]
    length = len(imagepaths)
    # get position
    positions = []
    t1 = time.time()
    if not opt.no_preview:
        cv2.namedWindow('preview', cv2.WINDOW_NORMAL)

    print('Step:2/4 -- Find ROI location')
    for i, imagepath in enumerate(imagepaths, 1):
        img = impro.imread(
            os.path.join(opt.temp_dir + '/video2image', imagepath))
        mask, x, y, size, area = runmodel.get_ROI_position(img, netS, opt)
        positions.append([x, y, area])
        cv2.imwrite(os.path.join(opt.temp_dir + '/ROI_mask', imagepath), mask)

        #preview result and print
        if not opt.no_preview:
            cv2.imshow('preview', mask)
            cv2.waitKey(1) & 0xFF
        t2 = time.time()
        print('\r',
              str(i) + '/' + str(length),
              util.get_bar(100 * i / length, num=35),
              util.counttime(t1, t2, i, length),
              end='')

    print('\nOptimize ROI locations...')
    mask_index = filt.position_medfilt(np.array(positions), 7)

    # add mosaic
    print('Step:3/4 -- Add Mosaic:')
    t1 = time.time()
    for i, imagepath in enumerate(imagepaths, 1):
        mask = impro.imread(
            os.path.join(opt.temp_dir + '/ROI_mask',
                         imagepaths[mask_index[i - 1]]), 'gray')
        img = impro.imread(
            os.path.join(opt.temp_dir + '/video2image', imagepath))
        if impro.mask_area(mask) > 100:
            try:  #Avoid unknown errors
                img = mosaic.addmosaic(img, mask, opt)
            except Exception as e:
                print('Warning:', e)
        cv2.imwrite(os.path.join(opt.temp_dir + '/addmosaic_image', imagepath),
                    img)
        os.remove(os.path.join(opt.temp_dir + '/video2image', imagepath))

        #preview result and print
        if not opt.no_preview:
            cv2.imshow('preview', img)
            cv2.waitKey(1) & 0xFF
        t2 = time.time()
        print('\r',
              str(i) + '/' + str(length),
              util.get_bar(100 * i / length, num=35),
              util.counttime(t1, t2, i, length),
              end='')

    print()
    if not opt.no_preview:
        cv2.destroyAllWindows()
    print('Step:4/4 -- Convert images to video')
    ffmpeg.image2video(
        fps,
        opt.temp_dir + '/addmosaic_image/output_%06d.' + opt.tempimage_type,
        opt.temp_dir + '/voice_tmp.mp3',
        os.path.join(opt.result_dir,
                     os.path.splitext(os.path.basename(path))[0] + '_add.mp4'))
Exemplo n.º 6
0
def main():
    if opt.mode == 'add':

        net = loadmodel.unet(opt)
        path = opt.media_path
        if util.is_img(path):
            print('Add Mosaic:', path)
            img = impro.imread(path)
            mask = runmodel.get_ROI_position(img, net, opt)[0]
            img = mosaic.addmosaic(img, mask, opt)
            cv2.imwrite(os.path.join(opt.result_dir, os.path.basename(path)),
                        img)
        elif util.is_video(path):
            util.clean_tempfiles()
            fps = ffmpeg.get_video_infos(path)[0]
            ffmpeg.video2voice(path, './tmp/voice_tmp.mp3')
            ffmpeg.video2image(
                path, './tmp/video2image/output_%05d.' + opt.tempimage_type)
            imagepaths = os.listdir('./tmp/video2image')
            imagepaths.sort()

            # get position
            positions = []
            for imagepath in imagepaths:
                imagepath = os.path.join('./tmp/video2image', imagepath)
                print('Find ROI location:', imagepath)
                img = impro.imread(imagepath)
                mask, x, y, area = runmodel.get_ROI_position(img, net, opt)
                positions.append([x, y, area])
                cv2.imwrite(
                    os.path.join('./tmp/ROI_mask',
                                 os.path.basename(imagepath)), mask)
            print('Optimize ROI locations...')
            mask_index = filt.position_medfilt(np.array(positions), 7)

            # add mosaic
            print('Add mosaic to images...')
            for i in range(len(imagepaths)):
                mask_path = os.path.join('./tmp/ROI_mask',
                                         imagepaths[mask_index[i]])
                mask = impro.imread(mask_path)
                img = impro.imread(
                    os.path.join('./tmp/video2image', imagepaths[i]))
                img = mosaic.addmosaic(img, mask, opt)
                cv2.imwrite(
                    os.path.join('./tmp/addmosaic_image',
                                 os.path.basename(imagepaths[i])), img)

            ffmpeg.image2video(
                fps, './tmp/addmosaic_image/output_%05d.' + opt.tempimage_type,
                './tmp/voice_tmp.mp3',
                os.path.join(
                    opt.result_dir,
                    os.path.splitext(os.path.basename(path))[0] + '_add.mp4'))

    elif opt.mode == 'clean':
        netG = loadmodel.pix2pix(opt)
        net_mosaic_pos = loadmodel.unet_clean(opt)
        path = opt.media_path
        if util.is_img(path):
            print('Clean Mosaic:', path)
            img_origin = impro.imread(path)
            x, y, size = runmodel.get_mosaic_position(img_origin,
                                                      net_mosaic_pos, opt)
            img_result = img_origin.copy()
            if size != 0:
                img_mosaic = img_origin[y - size:y + size, x - size:x + size]
                img_fake = runmodel.run_pix2pix(img_mosaic, netG, opt)
                img_result = impro.replace_mosaic(img_origin, img_fake, x, y,
                                                  size, opt.no_feather)
            cv2.imwrite(os.path.join(opt.result_dir, os.path.basename(path)),
                        img_result)

        elif util.is_video(path):
            util.clean_tempfiles()
            fps = ffmpeg.get_video_infos(path)[0]
            ffmpeg.video2voice(path, './tmp/voice_tmp.mp3')
            ffmpeg.video2image(
                path, './tmp/video2image/output_%05d.' + opt.tempimage_type)
            positions = []
            imagepaths = os.listdir('./tmp/video2image')
            imagepaths.sort()

            # get position
            for imagepath in imagepaths:
                imagepath = os.path.join('./tmp/video2image', imagepath)
                img_origin = impro.imread(imagepath)
                x, y, size = runmodel.get_mosaic_position(
                    img_origin, net_mosaic_pos, opt)
                positions.append([x, y, size])
                print('Find mosaic location:', imagepath)
            print('Optimize mosaic locations...')
            positions = np.array(positions)
            for i in range(3):
                positions[:, i] = filt.medfilt(positions[:, i],
                                               opt.medfilt_num)

            # clean mosaic
            for i, imagepath in enumerate(imagepaths, 0):
                imagepath = os.path.join('./tmp/video2image', imagepath)
                x, y, size = positions[i][0], positions[i][1], positions[i][2]
                img_origin = impro.imread(imagepath)
                img_result = img_origin.copy()
                if size != 0:
                    img_mosaic = img_origin[y - size:y + size,
                                            x - size:x + size]
                    img_fake = runmodel.run_pix2pix(img_mosaic, netG, opt)
                    img_result = impro.replace_mosaic(img_origin, img_fake, x,
                                                      y, size, opt.no_feather)
                cv2.imwrite(
                    os.path.join('./tmp/replace_mosaic',
                                 os.path.basename(imagepath)), img_result)
                print('Clean Mosaic:', imagepath)
            ffmpeg.image2video(
                fps, './tmp/replace_mosaic/output_%05d.' + opt.tempimage_type,
                './tmp/voice_tmp.mp3',
                os.path.join(
                    opt.result_dir,
                    os.path.splitext(os.path.basename(path))[0] +
                    '_clean.mp4'))
    util.clean_tempfiles(tmp_init=False)