def __init__(self): # .......................................................................... print('data pre-processing is done') self.x = tf.placeholder(shape=[self.batch_size, self.word_size], dtype=tf.int32) self.y_ = tf.placeholder(shape=[self.batch_size], dtype=tf.float32) embeddings = tf.Variable( tf.random_uniform([566 + 2, self.embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, self.x) X = tf.reshape( embed, [self.batch_size, self.word_size, self.embedding_size, 1]) c1 = ml.conv2d(X, conv_filter=[10, self.embedding_size, 1, 2], padding='VALID', ksize=[1, 10, 1, 1], pool_stride=[1, 4, 1, 1], pool_padding='SAME') c2 = ml.conv2d(c1, conv_filter=[4, 1, 2, 4], padding='SAME', ksize=[1, 10, 1, 1], pool_stride=[1, 5, 1, 1], pool_padding='SAME') c3 = ml.conv2d(c2, conv_filter=[5, 1, 4, 8], padding='VALID', ksize=[1, 1, 1, 1], pool_stride=[1, 1, 1, 1], pool_padding='VALID') out = tf.reshape(c3, shape=[self.batch_size, 8]) self.y = tf.nn.sigmoid(ml.layer_basic(out, 1))[:, 0] # ................................................................... self.sess = tf.Session() saver = tf.train.Saver() saver.restore( self.sess, '/home/liangoy/Desktop/project/xingqiao_model/msgTfidf566')
train_data_t = np.array([i for i in data[:-1 * batch_size] if i[0] == 1]) def next(batch_size=batch_size): r_t = np.random.randint(0, len(train_data_t), int(batch_size / 2)) r_f = np.random.randint(0, len(train_data_f), int(batch_size / 2)) data = np.concatenate([train_data_t[r_t], train_data_f[r_f]]) return data[:, 1:], data[:, 0] x = tf.placeholder(shape=[batch_size, score_size], dtype=tf.float32) y_ = tf.placeholder(shape=[batch_size], dtype=tf.float32) X = tf.reshape(x, [batch_size, score_size, 1, 1]) c1 = ml.conv2d(X, conv_filter=[4, 1, 1, 2], ksize=[1, 11, 1, 1], pool_stride=[1, 10, 1, 1]) c2 = ml.conv2d(c1, conv_filter=[4, 1, 2, 4], ksize=[1, 30, 1, 1], pool_stride=[1, 20, 1, 1]) c3 = ml.conv2d(c2, conv_filter=[5, 1, 4, 8], padding='VALID', ksize=[1, 1, 1, 1], pool_stride=[1, 1, 1, 1]) c_out = tf.reshape(c3, [batch_size, 8]) lay2 = ml.layer_basic(c_out, 1) y = tf.nn.sigmoid(lay2[:, 0])
sample = data[i:i + long] a.append( np.concatenate([sample[:-1, :10], [[sample[-1][0]]] * (long - 1)], axis=-1)) b.append(sample[-1][otype]) return a, b x = tf.placeholder(shape=[batch_size, long - 1, 11], dtype=tf.float16) y_ = tf.placeholder(shape=[batch_size], dtype=tf.float16) X = tf.reshape(tf.nn.tanh(x), [batch_size, long - 1, x.shape[-1], 1]) c1 = ml.conv2d(X, conv_filter=[1, x.shape[-1], 1, 4], padding='VALID', ksize=[1, 1, 1, 1], pool_padding='VALID', nn=tf.nn.tanh) c2 = ml.conv2d(c1, conv_filter=[4, 1, 4, 6], padding='SAME', ksize=[1, 6, 1, 1], pool_stride=[1, 5, 1, 1], pool_padding='SAME', nn=tf.nn.tanh) c3 = ml.conv2d(c2, conv_filter=[3, 1, 6, 8], padding='SAME', ksize=[1, 6, 1, 1], pool_stride=[1, 6, 1, 1], pool_padding='VALID',
x_test, y_test = np.array(test_data.drop(word_size, axis=1)), np.array( test_data[word_size]) x = tf.placeholder(shape=[batch_size, word_size], dtype=tf.int32) y_ = tf.placeholder(shape=[batch_size], dtype=tf.float32) embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, x + 1) X = tf.reshape(embed, [batch_size, word_size, embedding_size, 1]) c1 = ml.conv2d(X, conv_filter=[3, embedding_size, 1, 2], padding='VALID', ksize=[1, 20, 1, 1], pool_stride=[1, 10, 1, 1], pool_padding='SAME') c2 = ml.conv2d(c1, conv_filter=[4, 1, 2, 4], padding='SAME', ksize=[1, 10, 1, 1], pool_stride=[1, 10, 1, 1], pool_padding='SAME') c3 = ml.conv2d(c2, conv_filter=[2, 1, 4, 8], padding='SAME', ksize=[1, 10, 1, 1], pool_stride=[1, 10, 1, 1], pool_padding='VALID') # lay1 = tf.reshape(c2, [batch_size, -1])
import tensorflow as tf from util.image import generate_image from util import ml batch_size = 128 shape = [batch_size] + list(generate_image(1)[1][0].shape) print(shape) x = tf.placeholder(shape=shape, dtype=tf.float32) y_ = tf.placeholder(shape=[batch_size], dtype=tf.int32) training = tf.placeholder(dtype=tf.bool) c1 = ml.conv2d(x, conv_filter=[3, 4, 3, 8], ksize=[1, 4, 5, 1], pool_stride=[1, 3, 4, 1]) # [20,40 ] c2 = ml.conv2d(c1, conv_filter=[3, 4, 8, 16], ksize=[1, 4, 5, 1], pool_stride=[1, 2, 4, 1]) # [10,10] c3 = ml.conv2d(c2, conv_filter=[3, 4, 16, 32], ksize=[1, 3, 3, 1], pool_stride=[1, 2, 2, 1]) # [5,5] w = tf.Variable(tf.random_uniform([5, 5, 32, 128], -1.0, 1.0)) b = tf.Variable(tf.random_uniform([128], -1.0, 1.0)) c4 = tf.nn.conv2d(c3, filter=w, strides=[1, 1, 1, 1], padding='VALID') out = tf.reshape(c4, shape=[batch_size, 128]) y = tf.nn.softmax(ml.layer_basic(tf.layers.batch_normalization(out, axis=-1, training=training), 36)) loss = -tf.reduce_mean(tf.one_hot(y_, depth=36) * tf.log(y + 0.0001)) / batch_size / tf.log(2.0) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss) y_out = tf.argmax(y, axis=1)
print(shape) x = tf.placeholder(shape=shape, dtype=tf.float32) y_ = tf.placeholder(shape=[batch_size, 4], dtype=tf.int32) training = tf.placeholder(dtype=tf.bool) X = tf.layers.batch_normalization(x, training=True, trainable=False, scale=False, center=False, axis=0) c1 = ml.conv2d(tf.expand_dims(X, axis=-1), conv_filter=[5, 5, 1, 32], ksize=[1, 3, 4, 1], pool_stride=[1, 3, 4, 1], nn=tf.nn.relu) # [20,40 ] c2 = ml.conv2d(c1, conv_filter=[3, 4, 32, 64], ksize=[1, 2, 4, 1], pool_stride=[1, 2, 4, 1], nn=tf.nn.relu) # [10,10] c3 = ml.conv2d(c2, conv_filter=[3, 4, 64, 128], ksize=[1, 2, 2, 1], pool_stride=[1, 2, 2, 1], nn=tf.nn.relu) # [5,5] w = tf.Variable(tf.random_uniform([5, 5, 128, 256], -1.0, 1.0)) #b = tf.Variable(tf.random_uniform([512], -1.0, 1.0))
xx.append(train_data_x[i]) yy.append(train_data_y[i]) return xx, yy x_test, y_test = test_data_x[:batch_size], test_data_y[:batch_size] x = tf.placeholder(shape=[batch_size, msg_count, msg_size], dtype=tf.int32) y_ = tf.placeholder(shape=[batch_size], dtype=tf.float32) embeddings = tf.constant(embeddings) embed = tf.nn.embedding_lookup(embeddings, x) c1 = ml.conv2d(embed, conv_filter=[1, 4, embedding_size, 1], padding='VALID', ksize=[1, 100, 10, 1], pool_stride=[1, 100, 10, 1], pool_padding='VALID') # c2 = ml.conv2d(c1, conv_filter=[4, 4, 1, 1], padding='VALID', ksize=[1, 20, 5, 1], # pool_stride=[1, 10, 2, 1], # pool_padding='VALID') c3 = ml.conv2d(c1, conv_filter=[int(c1.shape[1]), int(c1.shape[2]), 1, 1], padding='VALID', ksize=[1, 1, 1, 1], pool_stride=[1, 1, 1, 1], pool_padding='VALID') y = tf.nn.sigmoid(ml.layer_basic(c3[:, 0, 0]))[:, 0] #gv = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
shape = [batch_size] + list(generate_number_image(1)[1][0].shape) print(shape) x = tf.placeholder(shape=shape, dtype=tf.float32) y_ = tf.placeholder(shape=[batch_size, 4], dtype=tf.int32) training = tf.placeholder(dtype=tf.bool) x_mean = tf.reshape(tf.tile(tf.reduce_mean(x, axis=[1, 2]), [30 * 80]), shape=[batch_size, 30, 80]) X = tf.nn.relu(tf.abs(x - x_mean) - 30) XX = X / (X + 0.0001) c1 = ml.conv2d(tf.expand_dims(XX, axis=-1), conv_filter=[5, 5, 1, 16], ksize=[1, 3, 4, 1], pool_stride=[1, 3, 4, 1], nn=tf.nn.relu) # [10,20 ] c2 = ml.conv2d(c1, conv_filter=[3, 4, 16, 32], ksize=[1, 2, 4, 1], pool_stride=[1, 2, 4, 1], nn=tf.nn.relu) # [5,5] w = tf.Variable(tf.random_uniform([5, 5, 32, 128], -1.0, 1.0)) #b = tf.Variable(tf.random_uniform([512], -1.0, 1.0)) c3 = tf.nn.conv2d(c2, filter=w, strides=[1, 1, 1, 1], padding='VALID') out = tf.nn.relu( tf.layers.batch_normalization(tf.reshape(c3, shape=[batch_size, 128]), training=training))