Exemplo n.º 1
0
    def largest_adjacent_product_in_grid(grid, num_adjacent_in_product):
        if num_adjacent_in_product == 0 or len(grid) == 0 or len(grid[0]) == 0:
            return 0
        if num_adjacent_in_product == 1:
            return max((max(row) for row in grid))
        assert all(len(grid[0]) == len(row)
                   for row in grid), 'Not all rows are the same length!'

        largest_product = 0
        x_max, y_max = len(grid), len(grid[0])
        n = num_adjacent_in_product - 1
        for x in range(x_max):
            for y in range(y_max):
                if x + n < x_max:
                    largest_product = max(
                        largest_product,
                        prod((grid[x][y] for x in range(x, x + n))))
                if y + n < y_max:
                    largest_product = max(
                        largest_product,
                        prod((grid[x][y] for y in range(y, y + n))))
                if x + n < x_max and y + n < x_max:
                    largest_product = max(
                        largest_product,
                        prod((grid[x + i][y + i]
                              for i in range(num_adjacent_in_product))))
                if x - n >= 0 and y + n < y_max:
                    largest_product = max(
                        largest_product,
                        prod((grid[x - i][y + i]
                              for i in range(num_adjacent_in_product))))
        return largest_product
Exemplo n.º 2
0
def num_proper_permutations_of_digits(digits, zero_value=0):
    digit_counts = Counter(digits)
    num_zeros = digit_counts.get(zero_value)
    n = len(digits)
    if num_zeros is None:
        return factorial(n) / prod(map(factorial, digit_counts.values()))
    else:
        del digit_counts[zero_value]
        return comb(n - 1, num_zeros) * (factorial(n - num_zeros) / prod(
            map(factorial, digit_counts.values())))
Exemplo n.º 3
0
def eulers_totient(n):
    """
    Euler's totient function counts the positive integers
    up to a given integer n that are relatively prime to n.
    """
    return prod(
        (base**(exp - 1) * (base - 1) for base, exp in prime_factors(n)))
Exemplo n.º 4
0
def aliquot_sum(n):
    """The aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n
    (all divisors of n other than n itself).
    """
    if 0 < n < 4:
        return 0
    return prod((base**(exponent + 1) - 1) // (base - 1)
                for base, exponent in prime_factors(n)) - n
Exemplo n.º 5
0
 def smallest_number_with_exactly_n_divisors(n):
     assert n > 0
     if n == 1 or n == 2:
         return n
     return min(
         prod(prime**(divisor - 1)
              for prime, divisor in zip(prime_numbers(), partition))
         for partition in multiplicative_partitions(n))
Exemplo n.º 6
0
 def get_largest_product_of_adjacent_digits(n, n_digits):
     digits = list(map(int, str(n)))
     assert n_digits <= len(digits)
     largest_product = 0
     for i in range(len(digits) - n_digits):
         largest_product = max(largest_product,
                               prod(digits[i:i + n_digits]))
     return largest_product
Exemplo n.º 7
0
 def smallest_number_evenly_divisible_by_all(max_val):
     assert max_val > 0
     if max_val == 1:
         return 1
     if max_val == 2:
         return 2
     max_power_of_prime_factors = {}
     for n in range(2, max_val + 1):
         for factor, exponent in prime_factors(n):
             max_power_of_prime_factors[factor] = max(
                 max_power_of_prime_factors.get(factor, 0), exponent)
     return prod(
         (factor**exponent
          for factor, exponent in max_power_of_prime_factors.items()))
Exemplo n.º 8
0
def factorial(n):
    assert n >= 0
    return prod(range(1, n + 1))
Exemplo n.º 9
0
def num_divisors(n):
    if n == 0 or n == 1 or n == 2:
        return n
    return prod(((exponent + 1) for _, exponent in prime_factors(n)))
Exemplo n.º 10
0
 def get_answer(self):
     n_digits = (1, 10, 100, 1000, 10000, 100000, 1000000)
     return prod(map(self.nth_digit_of_concatenated_positive_integers, n_digits))