def compare_to_benchmark(self): """ Are we comparing to a benchmark? """ basename = self.rp.get_param("io.basename") compare_file = "{}/tests/{}{:04d}".format(self.solver_name, basename, self.sim.n) msg.warning("comparing to: {} ".format(compare_file)) try: sim_bench = io.read(compare_file) except IOError: msg.warning("ERROR openning compare file") return "ERROR openning compare file" result = compare.compare(self.sim.cc_data, sim_bench.cc_data) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: " + compare.errors[result] + "\n") return result
def compare_to_benchmark(self, rtol): """ Are we comparing to a benchmark? """ basename = self.rp.get_param("io.basename") compare_file = "{}/tests/{}{:04d}".format( self.solver_name, basename, self.sim.n) msg.warning("comparing to: {} ".format(compare_file)) try: sim_bench = io.read(compare_file) except IOError: msg.warning("ERROR opening compare file") return "ERROR opening compare file" result = compare.compare(self.sim.cc_data, sim_bench.cc_data, rtol) if result == 0: msg.success("results match benchmark to within relative tolerance of {}\n".format(rtol)) else: msg.warning("ERROR: " + compare.errors[result] + "\n") return result
def test_general_poisson_inhomogeneous(N, store_bench=False, comp_bench=False, make_plot=False, verbose=1): """ test the general MG solver. The return value here is the error compared to the exact solution, UNLESS comp_bench=True, in which case the return value is the error compared to the stored benchmark """ # test the multigrid solver nx = N ny = nx # create the coefficient variable g = patch.Grid2d(nx, ny, ng=1) d = patch.CellCenterData2d(g) bc_c = patch.BCObject(xlb="neumann", xrb="neumann", ylb="neumann", yrb="neumann") d.register_var("alpha", bc_c) d.register_var("beta", bc_c) d.register_var("gamma_x", bc_c) d.register_var("gamma_y", bc_c) d.create() a = d.get_var("alpha") a[:,:] = alpha(g.x2d, g.y2d) b = d.get_var("beta") b[:,:] = beta(g.x2d, g.y2d) gx = d.get_var("gamma_x") gx[:,:] = gamma_x(g.x2d, g.y2d) gy = d.get_var("gamma_y") gy[:,:] = gamma_y(g.x2d, g.y2d) # create the multigrid object a = MG.GeneralMG2d(nx, ny, xl_BC_type="dirichlet", yl_BC_type="dirichlet", xr_BC_type="dirichlet", yr_BC_type="dirichlet", xl_BC=xl_func, yl_BC=yl_func, coeffs=d, verbose=verbose, vis=0, true_function=true) # initialize the solution to 0 a.init_zeros() # initialize the RHS using the function f rhs = f(a.x2d, a.y2d) print( np.min(rhs), np.max(rhs)) a.init_RHS(rhs) # solve to a relative tolerance of 1.e-10 a.solve(rtol=1.e-10) # alternately, we can just use smoothing by uncommenting the following #a.smooth(a.nlevels-1,50000) # get the solution v = a.get_solution() # compute the error from the analytic solution b = true(a.x2d,a.y2d) e = v - b enorm = a.soln_grid.norm(e) print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \ (enorm, a.relative_error, a.num_cycles)) # plot the solution if make_plot: plt.clf() plt.figure(figsize=(10.0,4.0), dpi=100, facecolor='w') plt.subplot(121) plt.imshow(np.transpose(v[a.ilo:a.ihi+1,a.jlo:a.jhi+1]), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.title("nx = {}".format(nx)) plt.colorbar() plt.subplot(122) plt.imshow(np.transpose(e[a.ilo:a.ihi+1,a.jlo:a.jhi+1]), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.title("error") plt.colorbar() plt.tight_layout() plt.savefig("mg_general_inhomogeneous_test.png") # store the output for later comparison bench = "mg_general_poisson_inhomogeneous" bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/" my_data = a.get_solution_object() if store_bench: my_data.write("{}/{}".format(bench_dir, bench)) # do we do a comparison? if comp_bench: compare_file = "{}/{}".format(bench_dir, bench) msg.warning("comparing to: %s " % (compare_file) ) bench_grid, bench_data = patch.read(compare_file) result = compare.compare(my_data.grid, my_data, bench_grid, bench_data) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: " + compare.errors[result] + "\n") return result # normal return -- error wrt true solution return enorm
def test_general_poisson_dirichlet(N, store_bench=False, comp_bench=False, make_plot=False, verbose=1): """ test the general MG solver. The return value here is the error compared to the exact solution, UNLESS comp_bench=True, in which case the return value is the error compared to the stored benchmark """ # test the multigrid solver nx = N ny = nx # create the coefficient variable g = patch.Grid2d(nx, ny, ng=1) d = patch.CellCenterData2d(g) bc_c = bnd.BC(xlb="neumann", xrb="neumann", ylb="neumann", yrb="neumann") d.register_var("alpha", bc_c) d.register_var("beta", bc_c) d.register_var("gamma_x", bc_c) d.register_var("gamma_y", bc_c) d.create() a = d.get_var("alpha") a[:, :] = alpha(g.x2d, g.y2d) b = d.get_var("beta") b[:, :] = beta(g.x2d, g.y2d) gx = d.get_var("gamma_x") gx[:, :] = gamma_x(g.x2d, g.y2d) gy = d.get_var("gamma_y") gy[:, :] = gamma_y(g.x2d, g.y2d) # create the multigrid object a = MG.GeneralMG2d(nx, ny, xl_BC_type="dirichlet", yl_BC_type="dirichlet", xr_BC_type="dirichlet", yr_BC_type="dirichlet", coeffs=d, verbose=verbose, vis=0, true_function=true) # initialize the solution to 0 a.init_zeros() # initialize the RHS using the function f rhs = f(a.x2d, a.y2d) a.init_RHS(rhs) # solve to a relative tolerance of 1.e-11 a.solve(rtol=1.e-11) # alternately, we can just use smoothing by uncommenting the following # a.smooth(a.nlevels-1,50000) # get the solution v = a.get_solution() # compute the error from the analytic solution b = true(a.x2d, a.y2d) e = v - b enorm = e.norm() print( " L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % (enorm, a.relative_error, a.num_cycles)) # plot the solution if make_plot: plt.clf() plt.figure(figsize=(10.0, 4.0), dpi=100, facecolor='w') plt.subplot(121) plt.imshow(np.transpose(v.v()), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.title("nx = {}".format(nx)) plt.colorbar() plt.subplot(122) plt.imshow(np.transpose(e.v()), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.title("error") plt.colorbar() plt.tight_layout() plt.savefig("mg_general_dirichlet_test.png") # store the output for later comparison bench = "mg_general_poisson_dirichlet" bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/" my_data = a.get_solution_object() if store_bench: my_data.write("{}/{}".format(bench_dir, bench)) # do we do a comparison? if comp_bench: compare_file = "{}/{}".format(bench_dir, bench) msg.warning("comparing to: %s " % (compare_file)) bench = io.read(compare_file) result = compare.compare(my_data, bench) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: " + compare.errors[result] + "\n") return result # normal return -- error wrt true solution return enorm
def doit(solver_name, problem_name, param_file, other_commands=None, comp_bench=False, make_bench=False): msg.bold('pyro ...') tc = profile.TimerCollection() tm_main = tc.timer("main") tm_main.begin() # import desired solver under "solver" namespace solver = importlib.import_module(solver_name) #------------------------------------------------------------------------- # runtime parameters #------------------------------------------------------------------------- # parameter defaults rp = runparams.RuntimeParameters() rp.load_params("_defaults") rp.load_params(solver_name + "/_defaults") # problem-specific runtime parameters rp.load_params(solver_name + "/problems/_" + problem_name + ".defaults") # now read in the inputs file if not os.path.isfile(param_file): # check if the param file lives in the solver's problems directory param_file = solver_name + "/problems/" + param_file if not os.path.isfile(param_file): msg.fail("ERROR: inputs file does not exist") rp.load_params(param_file, no_new=1) # and any commandline overrides if not other_commands == None: rp.command_line_params(other_commands) # write out the inputs.auto rp.print_paramfile() #------------------------------------------------------------------------- # initialization #------------------------------------------------------------------------- # initialize the Simulation object -- this will hold the grid and # data and know about the runtime parameters and which problem we # are running sim = solver.Simulation(solver_name, problem_name, rp, timers=tc) sim.initialize() sim.preevolve() #------------------------------------------------------------------------- # evolve #------------------------------------------------------------------------- init_tstep_factor = rp.get_param("driver.init_tstep_factor") max_dt_change = rp.get_param("driver.max_dt_change") fix_dt = rp.get_param("driver.fix_dt") verbose = rp.get_param("driver.verbose") plt.ion() sim.cc_data.t = 0.0 # output the 0th data basename = rp.get_param("io.basename") sim.cc_data.write("{}{:04d}".format(basename, sim.n)) dovis = rp.get_param("vis.dovis") if dovis: plt.figure(num=1, figsize=(8,6), dpi=100, facecolor='w') sim.dovis() while not sim.finished(): # fill boundary conditions sim.cc_data.fill_BC_all() # get the timestep if fix_dt > 0.0: sim.dt = fix_dt else: sim.compute_timestep() if sim.n == 0: sim.dt = init_tstep_factor*sim.dt else: sim.dt = min(max_dt_change*dt_old, sim.dt) dt_old = sim.dt if sim.cc_data.t + sim.dt > sim.tmax: sim.dt = sim.tmax - sim.cc_data.t # evolve for a single timestep sim.evolve() if verbose > 0: print("%5d %10.5f %10.5f" % (sim.n, sim.cc_data.t, sim.dt)) # output if sim.do_output(): if verbose > 0: msg.warning("outputting...") basename = rp.get_param("io.basename") sim.cc_data.write("{}{:04d}".format(basename, sim.n)) # visualization if dovis: tm_vis = tc.timer("vis") tm_vis.begin() sim.dovis() store = rp.get_param("vis.store_images") if store == 1: basename = rp.get_param("io.basename") plt.savefig("{}{:04d}.png".format(basename, sim.n)) tm_vis.end() tm_main.end() #------------------------------------------------------------------------- # benchmarks (for regression testing) #------------------------------------------------------------------------- # are we comparing to a benchmark? if comp_bench: compare_file = solver_name + "/tests/" + basename + "%4.4d" % (sim.n) msg.warning("comparing to: %s " % (compare_file) ) try: bench_grid, bench_data = patch.read(compare_file) except: msg.warning("ERROR openning compare file") return "ERROR openning compare file" result = compare.compare(sim.cc_data.grid, sim.cc_data, bench_grid, bench_data) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: " + compare.errors[result] + "\n") # are we storing a benchmark? if make_bench: if not os.path.isdir(solver_name + "/tests/"): try: os.mkdir(solver_name + "/tests/") except: msg.fail("ERROR: unable to create the solver's tests/ directory") bench_file = solver_name + "/tests/" + basename + "%4.4d" % (sim.n) msg.warning("storing new benchmark: {}\n".format(bench_file)) sim.cc_data.write(bench_file) #------------------------------------------------------------------------- # final reports #------------------------------------------------------------------------- if verbose > 0: rp.print_unused_params() if verbose > 0: tc.report() sim.finalize() if comp_bench: return result else: return None
def test_poisson_dirichlet(N, store_bench=False, comp_bench=False, make_plot=False, verbose=1): # test the multigrid solver nx = N ny = nx # create the multigrid object a = MG.CellCenterMG2d(nx, ny, xl_BC_type="dirichlet", yl_BC_type="dirichlet", xr_BC_type="dirichlet", yr_BC_type="dirichlet", verbose=verbose) # initialize the solution to 0 a.init_zeros() # initialize the RHS using the function f rhs = f(a.x2d, a.y2d) a.init_RHS(rhs) # solve to a relative tolerance of 1.e-11 a.solve(rtol=1.e-11) # alternately, we can just use smoothing by uncommenting the following #a.smooth(a.nlevels-1,50000) # get the solution v = a.get_solution() # compute the error from the analytic solution b = true(a.x2d, a.y2d) e = v - b print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \ (e.norm(), a.relative_error, a.num_cycles)) # plot it if make_plot: plt.figure(num=1, figsize=(5.0, 5.0), dpi=100, facecolor='w') plt.imshow(np.transpose(v[a.ilo:a.ihi + 1, a.jlo:a.jhi + 1]), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.savefig("mg_test.png") # store the output for later comparison bench = "mg_poisson_dirichlet" bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/" my_data = a.get_solution_object() if store_bench: my_data.write("{}/{}".format(bench_dir, bench)) # do we do a comparison? if comp_bench: compare_file = "{}/{}".format(bench_dir, bench) msg.warning("comparing to: %s " % (compare_file)) bench_grid, bench_data = patch.read(compare_file) result = compare.compare(my_data.grid, my_data, bench_grid, bench_data) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: " + compare.errors[result] + "\n") return result return None
def doit(solver_name, problem_name, param_file, other_commands=None, comp_bench=False, reset_bench_on_fail=False, make_bench=False): """The main driver to run pyro""" msg.bold('pyro ...') tc = profile.TimerCollection() tm_main = tc.timer("main") tm_main.begin() # import desired solver under "solver" namespace solver = importlib.import_module(solver_name) #------------------------------------------------------------------------- # runtime parameters #------------------------------------------------------------------------- # parameter defaults rp = runparams.RuntimeParameters() rp.load_params("_defaults") rp.load_params(solver_name + "/_defaults") # problem-specific runtime parameters rp.load_params(solver_name + "/problems/_" + problem_name + ".defaults") # now read in the inputs file if not os.path.isfile(param_file): # check if the param file lives in the solver's problems directory param_file = solver_name + "/problems/" + param_file if not os.path.isfile(param_file): msg.fail("ERROR: inputs file does not exist") rp.load_params(param_file, no_new=1) # and any commandline overrides if other_commands is not None: rp.command_line_params(other_commands) # write out the inputs.auto rp.print_paramfile() #------------------------------------------------------------------------- # initialization #------------------------------------------------------------------------- # initialize the Simulation object -- this will hold the grid and # data and know about the runtime parameters and which problem we # are running sim = solver.Simulation(solver_name, problem_name, rp, timers=tc) sim.initialize() sim.preevolve() #------------------------------------------------------------------------- # evolve #------------------------------------------------------------------------- verbose = rp.get_param("driver.verbose") plt.ion() sim.cc_data.t = 0.0 # output the 0th data basename = rp.get_param("io.basename") sim.write("{}{:04d}".format(basename, sim.n)) dovis = rp.get_param("vis.dovis") if dovis: plt.figure(num=1, figsize=(8, 6), dpi=100, facecolor='w') sim.dovis() while not sim.finished(): # fill boundary conditions sim.cc_data.fill_BC_all() # get the timestep sim.compute_timestep() # evolve for a single timestep sim.evolve() if verbose > 0: print("%5d %10.5f %10.5f" % (sim.n, sim.cc_data.t, sim.dt)) # output if sim.do_output(): if verbose > 0: msg.warning("outputting...") basename = rp.get_param("io.basename") sim.write("{}{:04d}".format(basename, sim.n)) # visualization if dovis: tm_vis = tc.timer("vis") tm_vis.begin() sim.dovis() store = rp.get_param("vis.store_images") if store == 1: basename = rp.get_param("io.basename") plt.savefig("{}{:04d}.png".format(basename, sim.n)) tm_vis.end() # final output if verbose > 0: msg.warning("outputting...") basename = rp.get_param("io.basename") sim.write("{}{:04d}".format(basename, sim.n)) tm_main.end() #------------------------------------------------------------------------- # benchmarks (for regression testing) #------------------------------------------------------------------------- result = 0 # are we comparing to a benchmark? if comp_bench: compare_file = "{}/tests/{}{:04d}".format( solver_name, basename, sim.n) msg.warning("comparing to: {} ".format(compare_file)) try: sim_bench = io.read(compare_file) except: msg.warning("ERROR openning compare file") return "ERROR openning compare file" result = compare.compare(sim.cc_data, sim_bench.cc_data) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: " + compare.errors[result] + "\n") # are we storing a benchmark? if make_bench or (result != 0 and reset_bench_on_fail): if not os.path.isdir(solver_name + "/tests/"): try: os.mkdir(solver_name + "/tests/") except: msg.fail("ERROR: unable to create the solver's tests/ directory") bench_file = solver_name + "/tests/" + basename + "%4.4d" % (sim.n) msg.warning("storing new benchmark: {}\n".format(bench_file)) sim.write(bench_file) #------------------------------------------------------------------------- # final reports #------------------------------------------------------------------------- if verbose > 0: rp.print_unused_params() tc.report() sim.finalize() if comp_bench: return result
tm_main.end() #----------------------------------------------------------------------------- # benchmarks (for regression testing) #----------------------------------------------------------------------------- # are we comparing to a benchmark? if comp_bench: compare_file = solver_name + "/tests/" + basename + "%4.4d" % (n) msg.warning("comparing to: %s " % (compare_file) ) bench_grid, bench_data = patch.read(compare_file) result = compare.compare(sim.cc_data.grid, sim.cc_data, bench_grid, bench_data) if result == 0: msg.success("results match benchmark\n") else: msg.fail("ERROR: " + compare.errors[result] + "\n") # are we storing a benchmark? if make_bench: bench_file = solver_name + "/tests/" + basename + "%4.4d" % (n) msg.warning("storing new benchmark: %s\n " % (bench_file) ) sim.cc_data.write(bench_file) #----------------------------------------------------------------------------- # final reports #----------------------------------------------------------------------------- rp.print_unused_params()
def test_vc_poisson_periodic(N, store_bench=False, comp_bench=False, make_plot=False, verbose=1): """ test the variable-coefficient MG solver. The return value here is the error compared to the exact solution, UNLESS comp_bench=True, in which case the return value is the error compared to the stored benchmark """ # test the multigrid solver nx = N ny = nx # create the coefficient variable g = patch.Grid2d(nx, ny, ng=1) d = patch.CellCenterData2d(g) bc_c = bnd.BC(xlb="periodic", xrb="periodic", ylb="periodic", yrb="periodic") d.register_var("c", bc_c) d.create() c = d.get_var("c") c[:, :] = alpha(g.x2d, g.y2d) # check whether the RHS sums to zero (necessary for periodic data) rhs = f(g.x2d, g.y2d) print("rhs sum: {}".format(np.sum(rhs[g.ilo:g.ihi + 1, g.jlo:g.jhi + 1]))) # create the multigrid object a = MG.VarCoeffCCMG2d(nx, ny, xl_BC_type="periodic", yl_BC_type="periodic", xr_BC_type="periodic", yr_BC_type="periodic", coeffs=c, coeffs_bc=bc_c, verbose=verbose, vis=0, true_function=true) # initialize the solution to 0 a.init_zeros() # initialize the RHS using the function f rhs = f(a.x2d, a.y2d) a.init_RHS(rhs) # solve to a relative tolerance of 1.e-11 a.solve(rtol=1.e-11) # alternately, we can just use smoothing by uncommenting the following #a.smooth(a.nlevels-1,10000) # get the solution v = a.get_solution() # get the true solution b = true(a.x2d, a.y2d) # compute the error from the analytic solution -- note that with # periodic BCs all around, there is nothing to normalize the # solution. We subtract off the average of phi from the MG # solution (we do the same for the true solution to put them on # the same footing) e = v - np.sum(v.v()) / (nx * ny) - ( b - np.sum(b[a.ilo:a.ihi + 1, a.jlo:a.jhi + 1]) / (nx * ny)) enorm = e.norm() print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \ (enorm, a.relative_error, a.num_cycles)) # plot the solution if make_plot: plt.clf() plt.figure(figsize=(10.0, 4.0), dpi=100, facecolor='w') plt.subplot(121) plt.imshow(np.transpose(v.v()), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.title("nx = {}".format(nx)) plt.colorbar() plt.subplot(122) plt.imshow(np.transpose(e.v()), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.title("error") plt.colorbar() plt.tight_layout() plt.savefig("mg_vc_periodic_test.png") # store the output for later comparison bench = "mg_vc_poisson_periodic" bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/" my_data = a.get_solution_object() if store_bench: my_data.write("{}/{}".format(bench_dir, bench)) # do we do a comparison? if comp_bench: compare_file = "{}/{}".format(bench_dir, bench) msg.warning("comparing to {}".format(compare_file)) bench_grid, bench_data = patch.read(compare_file) result = compare.compare(my_data.grid, my_data, bench_grid, bench_data) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: {}\n".format(compare.errors[result])) return result # normal return -- error wrt true solution return enorm
def test_poisson_dirichlet(N, store_bench=False, comp_bench=False, make_plot=False, verbose=1): # test the multigrid solver nx = N ny = nx # create the multigrid object a = MG.CellCenterMG2d(nx, ny, xl_BC_type="dirichlet", yl_BC_type="dirichlet", xr_BC_type="dirichlet", yr_BC_type="dirichlet", verbose=verbose) # initialize the solution to 0 a.init_zeros() # initialize the RHS using the function f rhs = f(a.x2d, a.y2d) a.init_RHS(rhs) # solve to a relative tolerance of 1.e-11 a.solve(rtol=1.e-11) # alternately, we can just use smoothing by uncommenting the following #a.smooth(a.nlevels-1,50000) # get the solution v = a.get_solution() # compute the error from the analytic solution b = true(a.x2d,a.y2d) e = v - b print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \ (a.soln_grid.norm(e), a.relative_error, a.num_cycles)) # plot it if make_plot: plt.figure(num=1, figsize=(5.0,5.0), dpi=100, facecolor='w') plt.imshow(np.transpose(v[a.ilo:a.ihi+1,a.jlo:a.jhi+1]), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.savefig("mg_test.png") # store the output for later comparison bench = "mg_poisson_dirichlet" bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/" my_data = a.get_solution_object() if store_bench: my_data.write("{}/{}".format(bench_dir, bench)) # do we do a comparison? if comp_bench: compare_file = "{}/{}".format(bench_dir, bench) msg.warning("comparing to: %s " % (compare_file) ) bench_grid, bench_data = patch.read(compare_file) result = compare.compare(my_data.grid, my_data, bench_grid, bench_data) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: " + compare.errors[result] + "\n") return result return None
def test_vc_poisson_periodic(N, store_bench=False, comp_bench=False, make_plot=False, verbose=1): """ test the variable-coefficient MG solver. The return value here is the error compared to the exact solution, UNLESS comp_bench=True, in which case the return value is the error compared to the stored benchmark """ # test the multigrid solver nx = N ny = nx # create the coefficient variable g = patch.Grid2d(nx, ny, ng=1) d = patch.CellCenterData2d(g) bc_c = patch.BCObject(xlb="periodic", xrb="periodic", ylb="periodic", yrb="periodic") d.register_var("c", bc_c) d.create() c = d.get_var("c") c[:,:] = alpha(g.x2d, g.y2d) # check whether the RHS sums to zero (necessary for periodic data) rhs = f(g.x2d, g.y2d) print("rhs sum: {}".format(np.sum(rhs[g.ilo:g.ihi+1,g.jlo:g.jhi+1]))) # create the multigrid object a = MG.VarCoeffCCMG2d(nx, ny, xl_BC_type="periodic", yl_BC_type="periodic", xr_BC_type="periodic", yr_BC_type="periodic", coeffs=c, coeffs_bc=bc_c, verbose=verbose, vis=0, true_function=true) # initialize the solution to 0 a.init_zeros() # initialize the RHS using the function f rhs = f(a.x2d, a.y2d) a.init_RHS(rhs) # solve to a relative tolerance of 1.e-11 a.solve(rtol=1.e-11) # alternately, we can just use smoothing by uncommenting the following #a.smooth(a.nlevels-1,10000) # get the solution v = a.get_solution() # get the true solution b = true(a.x2d,a.y2d) # compute the error from the analytic solution -- note that with # periodic BCs all around, there is nothing to normalize the # solution. We subtract off the average of phi from the MG # solution (we do the same for the true solution to put them on # the same footing) e = v - np.sum(v[a.ilo:a.ihi+1,a.jlo:a.jhi+1])/(nx*ny) - (b - np.sum(b[a.ilo:a.ihi+1,a.jlo:a.jhi+1])/(nx*ny)) enorm = a.soln_grid.norm(e) print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % \ (enorm, a.relative_error, a.num_cycles)) # plot the solution if make_plot: plt.clf() plt.figure(figsize=(10.0,4.0), dpi=100, facecolor='w') plt.subplot(121) plt.imshow(np.transpose(v[a.ilo:a.ihi+1,a.jlo:a.jhi+1]), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.title("nx = {}".format(nx)) plt.colorbar() plt.subplot(122) plt.imshow(np.transpose(e[a.ilo:a.ihi+1,a.jlo:a.jhi+1]), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") plt.title("error") plt.colorbar() plt.tight_layout() plt.savefig("mg_vc_periodic_test.png") # store the output for later comparison bench = "mg_vc_poisson_periodic" bench_dir = os.environ["PYRO_HOME"] + "/multigrid/tests/" my_data = a.get_solution_object() if store_bench: my_data.write("{}/{}".format(bench_dir, bench)) # do we do a comparison? if comp_bench: compare_file = "{}/{}".format(bench_dir, bench) msg.warning("comparing to {}".format(compare_file)) bench_grid, bench_data = patch.read(compare_file) result = compare.compare(my_data.grid, my_data, bench_grid, bench_data) if result == 0: msg.success("results match benchmark\n") else: msg.warning("ERROR: {}\n".format(compare.errors[result])) return result # normal return -- error wrt true solution return enorm
pf.end() #----------------------------------------------------------------------------- # benchmarks (for regression testing) #----------------------------------------------------------------------------- # are we comparing to a benchmark? if comp_bench: compare_file = solverName + "/tests/" + basename + "%4.4d" % (n) msg.warning("comparing to: %s " % (compare_file) ) bench_grid, bench_data = patch.read(compare_file) result = compare.compare(my_grid, my_data, bench_grid, bench_data) if result == 0: msg.success("results match benchmark\n") else: msg.fail("ERROR: " + compare.errors[result] + "\n") # are we storing a benchmark? if make_bench: bench_file = solverName + "/tests/" + basename + "%4.4d" % (n) msg.warning("storing new benchmark: %s\n " % (bench_file) ) my_data.write(bench_file) #----------------------------------------------------------------------------- # final reports #----------------------------------------------------------------------------- rp.print_unused_params()