Exemplo n.º 1
0
def measure_tree_width(image_path, trunk_corners):
    result = Result()  # 保存当前图片的分割结果,初始化为失败
    result.set_image_path(image_path)
    result.set_time(0)

    if not os.path.exists(image_path):
        result.set_info(InfoEnum.IMAGE_NOT_EXIST)
        return result
    if trunk_corners is None:
        result.set_info(InfoEnum.BAD_MANUAL_ANNO)
        return result

    result.set_trunk_left_top(trunk_corners['left_top'])
    result.set_trunk_left_bottom(trunk_corners['left_bottom'])
    result.set_trunk_right_top(trunk_corners['right_top'])
    result.set_trunk_left_bottom(trunk_corners['right_bottom'])

    im = cv2.imread(image_path)  # 加载图片
    im, resize_ratio = resize_image_with_ratio(im)  # 调整尺寸

    # 检测标定物
    calibrator = get_calibrator(im, 0, DEBUG and SHOW)
    if calibrator is None:
        result.set_info(InfoEnum.CALIBRATOR_DET_FAILED)
        return result

    # 在结果中保存激光点坐标
    # resize坐标 -> 原始坐标
    org_calibrate_pts = []
    for calibrate_pt in calibrator.get_calibrate_points():
        org_calibrate_pt = recover_coordinate(calibrate_pt, resize_ratio)
        org_calibrate_pts.append(org_calibrate_pt)
    result.set_calibrate_points(org_calibrate_pts)

    # 计算树径
    trunk_left_top = resize_coordinate(trunk_corners['left_top'], resize_ratio)
    trunk_left_bottom = resize_coordinate(trunk_corners['left_bottom'],
                                          resize_ratio)
    trunk_right_top = resize_coordinate(trunk_corners['right_top'],
                                        resize_ratio)
    trunk_right_bottom = resize_coordinate(trunk_corners['right_bottom'],
                                           resize_ratio)

    l_line = Edge(trunk_left_top, trunk_left_bottom)
    r_line = Edge(trunk_right_top, trunk_right_bottom)

    alpha = angle(l_line.vec(), r_line.vec())
    if alpha < 5:
        pixel_dis_l2r = parallel_distance(l_line, r_line)
        pixel_dis_r2l = parallel_distance(r_line, l_line)
        if pixel_dis_r2l is not None and pixel_dis_r2l is not None:
            pixel_width = (pixel_dis_l2r + pixel_dis_r2l) / 2.0
            RP_ratio = calibrator.RP_ratio()

            real_width = (pixel_width * RP_ratio)
            result.set_info(InfoEnum.SUCCESS)
            result.set_width(real_width)
            result.set_conf(1.0)
        else:
            result.set_info(InfoEnum.BAD_MANUAL_ANNO)
    else:
        result.set_info(InfoEnum.BAD_MANUAL_ANNO)

    return result
Exemplo n.º 2
0
Arquivo: main.py Projeto: sx14/tree
def measure_all(image_path_list):
    """
    为一批图像测算树径
    :param image_path_list: 图像路径列表
    :return: 树径测算结果列表
    """

    if image_path_list is None or len(image_path_list) == 0:
        # 输入不合法
        return {'results': []}

    seg_count = 0  # 计数分割操作的次数
    results_all = []  # 保存所有结果
    image_num = len(image_path_list)

    for i, im_path in enumerate(image_path_list):
        im_id = im_path.split('/')[-1].split('.')[0]

        result = Result()  # 当前图片测量结果
        result.set_image_path(im_path)
        results_all.append(result.get_result())
        time_start = time.time()

        if DEBUG:
            print('-' * 30)
            print('[%d/%d]: %s' % (image_num, i + 1, im_path.split('/')[-1]))

        if not os.path.exists(im_path):
            # 图像不存在
            result.set_info(InfoEnum.IMAGE_NOT_EXIST)
            continue

        im_org = cv2.imread(im_path)  # 加载图片
        im, resize_ratio = resize_image_with_ratio(im_org)  # 调整尺寸

        # step1: 检测标定物
        calibrator = get_calibrator(im, im_id, DEBUG and SHOW)
        if calibrator is None:
            result.set_info(InfoEnum.CALIBRATOR_DET_FAILED)
            continue

        # 检查站位
        calibrator_ratio = calibrator.get_pixel_scale() / im.shape[0]
        if calibrator_ratio > 0.25:
            result.set_info(InfoEnum.STAND_TOO_CLOSE)
            return result

        # 在结果中保存标定物坐标
        # resize坐标 -> 原始坐标
        org_calibrate_pts = []
        for calibrate_pt in calibrator.get_calibrate_points():
            org_calibrate_pt = recover_coordinate(calibrate_pt, resize_ratio)
            org_calibrate_pts.append(org_calibrate_pt)
        result.set_calibrate_points(org_calibrate_pts)

        # step2: 覆盖标定物,避免标定物影响分割
        im_cover = calibrator.cover_calibrator(im)

        if DEBUG:
            visualize_image(im_cover,
                            'img_cover',
                            im_id=im_id,
                            show=DEBUG and SHOW)

        # 参考标定物切割图片
        # 图片块尺寸由小到大迭代尝试
        crop_params = [2, 4]
        for j, n_crop in enumerate(crop_params):
            im_patch = calibrator.crop_image(im_cover, n_dis_w=n_crop)
            patch_h, patch_w, _ = im_patch.shape

            if DEBUG:
                print('H:%d, W:%d' % (patch_h, patch_w))
                visualize_image(im_patch,
                                'patch_%d' % n_crop,
                                im_id=im_id,
                                show=DEBUG and SHOW)

            # step4: 分割树干
            if im_patch.shape[0] > config.NET_MAX_WIDTH and im_patch.shape[
                    1] > config.NET_MAX_WIDTH:
                # 待分割的目标尺寸太大
                result.set_info(InfoEnum.TRUNK_TOO_THICK)
                break

            # 交互式分割
            trunk_mask = segment_trunk_int(im_patch,
                                           calibrator.positive_pts(),
                                           None,
                                           im_id=seg_count)
            seg_count += 1

            if DEBUG:
                visualize_image(trunk_mask,
                                'trunk_mask',
                                im_id=im_id,
                                show=DEBUG and SHOW)

            # step5: 计算树径
            trunk = Trunk(trunk_mask)

            if DEBUG:
                visualize_image(trunk.contour_mask,
                                'trunk_contour',
                                im_id=im_id,
                                show=DEBUG and SHOW)

            if not trunk.is_seg_succ():
                # 初步估计分割是否成功
                result.set_info(InfoEnum.TRUNK_EDGE_UNCLEAR)
                if DEBUG:
                    print(InfoEnum.TRUNK_EDGE_UNCLEAR)
                continue
            else:
                # 计算实际树径
                RP_ratio = calibrator.RP_ratio()  # 缩放因子
                shot_distance = calibrator.shot_distance()  # 拍摄距离
                trunk_width, seg_conf, patch_trunk_corners = trunk.real_width_v2(
                    shot_distance, RP_ratio)
                if trunk_width > 0:
                    # 置信度:分割置信度 x 标定置信度
                    conf = seg_conf * calibrator.get_conf()
                    time_end = time.time()
                    time_consume = int(time_end - time_start)

                    # 图片块坐标 -> resize图片坐标
                    trunk_left_top = calibrator.recover_coordinate(
                        patch_trunk_corners['left_top'])
                    trunk_right_top = calibrator.recover_coordinate(
                        patch_trunk_corners['right_top'])
                    trunk_left_bottom = calibrator.recover_coordinate(
                        patch_trunk_corners['left_bottom'])
                    trunk_right_bottom = calibrator.recover_coordinate(
                        patch_trunk_corners['right_bottom'])

                    # resize坐标 -> 原图坐标
                    trunk_left_top = recover_coordinate(
                        trunk_left_top, resize_ratio)
                    trunk_left_bottom = recover_coordinate(
                        trunk_left_bottom, resize_ratio)
                    trunk_right_top = recover_coordinate(
                        trunk_right_top, resize_ratio)
                    trunk_right_bottom = recover_coordinate(
                        trunk_right_bottom, resize_ratio)

                    result.set_width(trunk_width)
                    result.set_conf(conf)
                    result.set_trunk_left_top(trunk_left_top)
                    result.set_trunk_right_top(trunk_right_top)
                    result.set_trunk_left_bottom(trunk_left_bottom)
                    result.set_trunk_right_bottom(trunk_right_bottom)
                    result.set_info(InfoEnum.SUCCESS)
                    result.set_time(time_consume)

                    if DEBUG:
                        print('Trunk width: %.2f CM (%.2f).' %
                              (trunk_width / 10.0, conf))
                        pts = org_calibrate_pts + \
                              [trunk_left_top, trunk_left_bottom, trunk_right_top, trunk_right_bottom]
                        show_pts(im_org, pts, im_id=im_id, show=DEBUG and SHOW)
                    break
                else:
                    result.set_info(InfoEnum.TRUNK_EDGE_UNCLEAR)
                    if DEBUG:
                        print('Error is too large.')

    output = {'results': results_all}
    return output