Exemplo n.º 1
0
def query(data, modelState, queryState, queryPlan):
    '''
    Given a _trained_ model, attempts to predict the topics for each of
    the inputs.
    
    Params:
    data - the dataset of words, features and links of which only words are used in this model
    modelState - the _trained_ model
    queryState - the query state generated for the query dataset
    queryPlan  - used in this case as we need to tighten up the approx
    
    Returns:
    The model state and query state, in that order. The model state is
    unchanged, the query is.
    '''
    iterations, epsilon, logFrequency, diagonalPriorCov, debug = queryPlan.iterations, queryPlan.epsilon, queryPlan.logFrequency, queryPlan.fastButInaccurate, queryPlan.debug
    means, expMeans, varcs, n = queryState.means, queryState.expMeans, queryState.varcs, queryState.docLens
    K, topicMean, sigT, vocab, vocabPrior, A, dtype = modelState.K, modelState.topicMean, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.A, modelState.dtype
    
    debugFn = _debug_with_bound if debug else _debug_with_nothing
    W = data.words
    D = W.shape[0]
    
    # Necessary temp variables (notably the count of topic to word assignments
    # per topic per doc)
    isigT = la.inv(sigT)
    
    # Update the Variances
    varcs = 1./((n * (K-1.)/K)[:,np.newaxis] + isigT.flat[::K+1])
    debugFn (0, varcs, "varcs", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, A, n)
    
    lastPerp = 1E+300 if dtype is np.float64 else 1E+30
    R = W.copy()
    for itr in range(iterations):
        expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
        R = sparseScalarQuotientOfDot(W, expMeans, vocab, out=R)
        V = expMeans * R.dot(vocab.T)
        
        # Update the Means
        rhs = V.copy()
        rhs += n[:,np.newaxis] * means.dot(A) + isigT.dot(topicMean)
        rhs -= n[:,np.newaxis] * rowwise_softmax(means, out=means)
        if diagonalPriorCov:
            means = varcs * rhs
        else:
            for d in range(D):
                means[d,:] = la.inv(isigT + n[d] * A).dot(rhs[d,:])
        
        debugFn (itr, means, "means", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, A, n)
        
        like = log_likelihood(data, modelState, QueryState(means, expMeans, varcs, n))
        perp = perplexity_from_like(like, data.word_count)
        if itr > 20 and lastPerp - perp < 1:
            break
        lastPerp = perp

    return modelState, queryState
Exemplo n.º 2
0
def query(data, modelState, queryState, queryPlan):
    '''
    Given a _trained_ model, attempts to predict the topics for each of
    the inputs.
    
    Params:
    data - the dataset of words, features and links of which only words are used in this model
    modelState - the _trained_ model
    queryState - the query state generated for the query dataset
    queryPlan  - used in this case as we need to tighten up the approx
    
    Returns:
    The model state and query state, in that order. The model state is
    unchanged, the query is.
    '''
    iterations, epsilon, logFrequency, diagonalPriorCov, debug = queryPlan.iterations, queryPlan.epsilon, queryPlan.logFrequency, queryPlan.fastButInaccurate, queryPlan.debug
    means, varcs, n = queryState.means, queryState.varcs, queryState.docLens
    K, topicMean, topicCov, vocab, A, dtype = modelState.K, modelState.topicMean, modelState.topicCov, modelState.vocab, modelState.A, modelState.dtype
    
    debugFn = _debug_with_bound if debug else _debug_with_nothing
    W = data.words
    D = W.shape[0]

    expMeansOut = np.exp(means - means.max(axis=1)[:, np.newaxis])
    expMeansIn  = np.exp(means - means.max(axis=0)[np.newaxis, :])
    lse_at_k    = expMeansIn.sum(axis=0)
    
    # Necessary temp variables (notably the count of topic to word assignments
    # per topic per doc)
    itopicCov = la.inv(topicCov)
    
    # Update the Variances
    varcs = 1./((n * (K-1.)/K)[:,np.newaxis] + itopicCov.flat[::K+1])
    debugFn (0, varcs, "varcs", W, K, topicMean, topicCov, vocab, dtype, means, varcs, A, n)    
    
    R = W.copy()
    for itr in range(iterations):
        R = sparseScalarQuotientOfDot(W, expMeansOut, vocab, out=R)
        V = expMeansOut * R.dot(vocab.T)
        
        # Update the Means
        rhs = V.copy()
        rhs += n[:, np.newaxis] * means.dot(A) + itopicCov.dot(topicMean)
        rhs -= n[:, np.newaxis] * rowwise_softmax(means, out=means)
        if diagonalPriorCov:
            means = varcs * rhs
        else:
            for d in range(D):
                means[d, :] = la.inv(itopicCov + n[d] * A).dot(rhs[d, :])
        
        debugFn (itr, means, "means", W, K, topicMean, topicCov, vocab, dtype, means, varcs, A, n)        
        
    
    return modelState, queryState
 def testscaleProductOfQuotient(self):
     rd.seed(0xC0FFEE)
     
     D = 100
     T = 200
     K = 16
     
     W_d = np.floor(rd.random((D,T)) * 1.4)
     
     W_s = ssp.csr_matrix(W_d)
     topics = rd.random((D,K))
     vocab  = rd.random((K,T))
     
     expected = W_d / topics.dot(vocab)
     received = sparseScalarQuotientOfDot(W_s, topics, vocab)
     
     diff = np.asarray(expected - received.todense())
     trNorm = np.sum(diff * diff)
     print (str(trNorm))
     
     print (str(diff))
Exemplo n.º 4
0
def train (data, modelState, queryState, trainPlan):
    '''
    Infers the topic distributions in general, and specifically for
    each individual datapoint.
    
    Params:
    W - the DxT document-term matrix
    X - The DxF document-feature matrix, which is IGNORED in this case
    modelState - the actual CTM model
    queryState - the query results - essentially all the "local" variables
                 matched to the given observations
    trainPlan  - how to execute the training process (e.g. iterations,
                 log-interval etc.)

    Return:
    A new model object with the updated model (note parameters are
    updated in place, so make a defensive copy if you want itr)
    A new query object with the update query parameters
    '''
    W, L, LT, X = data.words, data.links, ssp.csr_matrix(data.links.T), data.feats
    D,_ = W.shape
    out_links = np.squeeze(np.asarray(data.links.sum(axis=1)))

    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, diagonalPriorCov, debug = trainPlan.iterations, trainPlan.epsilon, trainPlan.logFrequency, trainPlan.fastButInaccurate, trainPlan.debug
    outMeans, outVarcs, inMeans, inVarcs, inDocCov, docLens = queryState.outMeans, queryState.outVarcs, queryState.inMeans, queryState.inVarcs, queryState.inDocCov, queryState.docLens
    K, topicMean, topicCov, outDocCov, vocab, A, dtype = modelState.K, modelState.topicMean, modelState.topicCov, modelState.outDocCov, modelState.vocab, modelState.A, modelState.dtype

    emit_counts = docLens + out_links

    # Book-keeping for logs
    boundIters, boundValues, likelyValues = [], [], []

    if debug:
        debugFn = _debug_with_bound

        initLikely = log_likelihood(data, modelState, queryState)
        initPerp   = perplexity_from_like(initLikely, data.word_count)
        print ("Initial perplexity is: %.2f" % initPerp)
    else:
        debugFn = _debug_with_nothing

    # Initialize some working variables
    W_weight  = W.copy()
    L_weight  = L.copy()
    LT_weight = LT.copy()

    inDocCov,  inDocPre  = np.ones((D,)), np.ones((D,))

    # Interestingly, outDocCov trades off good perplexity fits
    # with good ranking fits. > 10 gives better perplexity and
    # worse ranking. At 10 both are good. Below 10 both get
    # worse. Below 0.5, convergence stalls after the first iter.
    outDocCov, outDocPre = 10, 1./10

    # Iterate over parameters
    for itr in range(iterations):
        # We start with the M-Step, so the parameters are consistent with our
        # initialisation of the RVs when we do the E-Step

        # Update the mean and covariance of the prior over out-topics
        topicMean = outMeans.mean(axis=0)
        debugFn (itr, topicMean, "topicMean", data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)

        outDiff = outMeans - topicMean[np.newaxis, :]
        inDiff =  inMeans - outMeans

        for _ in range(5): # It typically takes three iterations for the three dependant covariances -
                           # outDocCov, inDocCov and topicCov - to become consistent w.r.t each other
            topicCov  = (outDocPre * outDiff).T.dot(outDiff)
            topicCov += (inDocPre[:,np.newaxis] * inDiff).T.dot(inDiff)

            topicCov += np.diag(outVarcs.sum(axis=0))
            topicCov += np.diag(inVarcs.sum(axis=0))

            topicCov += IWISH_S_SCALE * np.eye(K)
            topicCov /= (2 * D + IWISH_DENOM)
            itopicCov = la.inv(topicCov)

            debugFn (itr, topicMean, "topicCov", data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)

            diffSig   = inDiff.dot(itopicCov)
            diffSig  *= inDiff

            inDocCov  = diffSig.sum(axis=1)
            inDocCov += (outVarcs * np.diagonal(itopicCov)[np.newaxis, :]).sum(axis=1)
            inDocCov += (inVarcs  * np.diagonal(itopicCov)[np.newaxis, :]).sum(axis=1)
            inDocCov += IGAMMA_B
            inDocCov /= (IGAMMA_A - 1 + K)
            inDocPre  = np.reciprocal(inDocCov)

            debugFn (itr, inDocCov, "inDocCov", data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)

            diffSig   = outDiff.dot(itopicCov)
            diffSig  *= outDiff
            # outDocCov = (IGAMMA_B + diffSig.sum() + (np.diagonal(itopicCov) * outVarcs).sum()) / (IGAMMA_A - 1 + (D * K))
            # outDocPre = 1./outDocCov

            debugFn (itr, outDocCov, "outDocCov", data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)


        # Apply the exp function to get the (unnormalised) softmaxes in both directions.
        expMeansCol = np.exp(inMeans - inMeans.max(axis=0)[np.newaxis, :])
        lse_at_k = np.sum(expMeansCol, axis=0)
        F = 0.5 * inMeans \
          - (0.5/ D) * inMeans.sum(axis=0) \
          - expMeansCol / lse_at_k[np.newaxis, :]

        expMeansRow = np.exp(outMeans - outMeans.max(axis=1)[:, np.newaxis])
        W_weight   = sparseScalarQuotientOfDot(W, expMeansRow, vocab, out=W_weight)

        # Update the vocabularies

        vocab *= (W_weight.T.dot(expMeansRow)).T # Awkward order to maintain sparsity (R is sparse, expMeans is dense)
        vocab += VocabPrior
        vocab = normalizerows_ip(vocab)

        docVocab = (expMeansCol / lse_at_k[np.newaxis, :]).T.copy() # FIXME Dupes line in definition of F

        # Recalculate w_top_sums with the new vocab and log vocab improvement
        W_weight = sparseScalarQuotientOfDot(W, expMeansRow, vocab, out=W_weight)
        w_top_sums = W_weight.dot(vocab.T) * expMeansRow

        debugFn (itr, vocab, "vocab", data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)

        # Now do likewise for the links, do it twice to model in-counts (first) and
        # out-counts (Second). The difference is the transpose
        LT_weight    = sparseScalarQuotientOfDot(LT, expMeansRow, docVocab, out=LT_weight)
        l_intop_sums = LT_weight.dot(docVocab.T) * expMeansRow
        in_counts    = l_intop_sums.sum(axis=0)

        L_weight     = sparseScalarQuotientOfDot(L, expMeansRow, docVocab, out=L_weight)
        l_outtop_sums = L_weight.dot(docVocab.T) * expMeansRow


        # Update the posterior variances
        outVarcs = np.reciprocal(emit_counts[:, np.newaxis] * (K-1)/(2*K) + (outDocPre + inDocPre[:,np.newaxis]) * np.diagonal(itopicCov)[np.newaxis,:])
        debugFn (itr, outVarcs, "outVarcs", data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)

        inVarcs = np.reciprocal(in_counts[np.newaxis,:] * (D-1)/(2*D) + inDocPre[:,np.newaxis] * np.diagonal(itopicCov)[np.newaxis,:])
        debugFn (itr, inVarcs, "inVarcs", data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)

        # Update the out-means and in-means
        out_rhs  = w_top_sums.copy()
        out_rhs += l_outtop_sums
        out_rhs += itopicCov.dot(topicMean) / outDocCov
        out_rhs += inMeans.dot(itopicCov) / inDocCov[:,np.newaxis]
        out_rhs += emit_counts[:, np.newaxis] * (outMeans.dot(A) - rowwise_softmax(outMeans))

        scaled_n_in = ((D-1.)/(2*D)) * ssp.diags(in_counts, 0)
        in_rhs = (inDocPre[:, np.newaxis] * outMeans).dot(itopicCov)
        in_rhs += ((-inMeans.sum(axis=0) * in_counts) / (4*D))[np.newaxis,:]
        in_rhs += l_intop_sums
        in_rhs += in_counts[np.newaxis, :] * F
        for d in range(D):
            in_rhs[d, :]  += in_counts * inMeans[d, :] / (4*D)
            inMeans[d, :]  = la.inv(inDocPre[d] * itopicCov + scaled_n_in).dot(in_rhs[d, :])
            in_rhs[d,:]   -= in_counts * inMeans[d, :] / (4*D)

            try:
                outCov          = la.inv((outDocPre + inDocPre[d]) * itopicCov + emit_counts[d] * A)
                outMeans[d, :]  = outCov.dot(out_rhs[d,:])
            except la.LinAlgError as err:
                print ("ABORTING: " + str(err))
                return \
                    ModelState(K, topicMean, topicCov, outDocCov, vocab, A, True, dtype, MODEL_NAME), \
                    QueryState(outMeans, outVarcs, inMeans, inVarcs, inDocCov, docLens), \
                    (np.array(boundIters), np.array(boundValues), np.array(likelyValues))


        debugFn (itr, outMeans, "inMeans/outMeans", data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)
        # debugFn (itr, inMeans,  "inMeans",  data, K, topicMean, topicCov, outDocCov, inDocCov, vocab, dtype, outMeans, outVarcs, inMeans, inVarcs, A, docLens)

        if logFrequency > 0 and itr % logFrequency == 0:
            modelState = ModelState(K, topicMean, topicCov, outDocCov, vocab, A, True, dtype, MODEL_NAME)
            queryState = QueryState(outMeans, outVarcs, inMeans, inVarcs, inDocCov, docLens)

            boundValues.append(var_bound(data, modelState, queryState))
            likelyValues.append(log_likelihood(data, modelState, queryState))
            boundIters.append(itr)

            print (time.strftime('%X') + " : Iteration %d: bound %f \t Perplexity: %.2f" % (itr, boundValues[-1], perplexity_from_like(likelyValues[-1], docLens.sum())))
            if len(boundValues) > 1:
                if boundValues[-2] > boundValues[-1]:
                    printStderr ("ERROR: bound degradation: %f > %f" % (boundValues[-2], boundValues[-1]))

                # Check to see if the improvement in the bound has fallen below the threshold
                if itr > MinItersBeforeEarlyStop and abs(perplexity_from_like(likelyValues[-1], docLens.sum()) - perplexity_from_like(likelyValues[-2], docLens.sum())) < 1.0:
                    break

        # if True or debug or itr % logFrequency == 0:
        #     print("   Sigma     %6.1f  \t %9.3g, %9.3g, %9.3g" % (np.log(la.det(topicCov)), topicCov.min(), topicCov.mean(), topicCov.max()), end="  |")
        #     print("   rho       %6.1f  \t %9.3g, %9.3g, %9.3g" % (sum(log(inDocCov[d]) for d in range(D)), inDocCov.min(), inDocCov.mean(), inDocCov.max()), end="  |")
        #     print("   alpha     %6.1f  \t %9.3g" % (np.log(la.det(np.eye(K,) * outDocCov)), outDocCov), end="  |")
        #     print("   inMeans   %9.3g, %9.3g, %9.3g" % (inMeans.min(),  inMeans.mean(),  inMeans.max()), end="  |")
        #     print("   outMeans  %9.3g, %9.3g, %9.3g" % (outMeans.min(), outMeans.mean(), outMeans.max()), end="  |")
        #     print("   inVarcs   %6.1f  \t %9.3g, %9.3g, %9.3g" % (sum(safe_log_det(np.diag(inVarcs[d]))  for d in range(D)) / D, inVarcs.min(),  inVarcs.mean(),  inVarcs.max()), end="  |")
        #     print("   outVarcs  %6.1f  \t %9.3g, %9.3g, %9.3g" % (sum(safe_log_det(np.diag(outVarcs[d])) for d in range(D)) / D, outVarcs.min(), outVarcs.mean(), outVarcs.max()))

    return \
        ModelState(K, topicMean, topicCov, outDocCov, vocab, A, True, dtype, MODEL_NAME), \
        QueryState(outMeans, outVarcs, inMeans, inVarcs, inDocCov, docLens), \
        (np.array(boundIters), np.array(boundValues), np.array(likelyValues))
Exemplo n.º 5
0
def var_bound(data, modelState, queryState):
    '''
    Determines the variational bounds. Values are mutated in place, but are
    reset afterwards to their initial values. So it's safe to call in a serial
    manner.
    '''
    
    # Unpack the the structs, for ease of access and efficiency
    W   = data.words
    D,_ = W.shape
    means, expMeans, varcs, docLens = queryState.means, queryState.expMeans, queryState.varcs, queryState.docLens
    K, topicMean, sigT, vocab, vocabPrior, A = modelState.K, modelState.topicMean, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.A
    
    # Calculate some implicit  variables
    isigT = la.inv(sigT)
    
    bound = 0
    
    if USE_NIW_PRIOR:
        pseudoObsMeans = K + NIW_PSEUDO_OBS_MEAN
        pseudoObsVar   = K + NIW_PSEUDO_OBS_VAR

        # distribution over topic covariance
        bound -= 0.5 * K * pseudoObsVar * log(NIW_PSI)
        bound -= 0.5 * K * pseudoObsVar * log(2)
        bound -= fns.multigammaln(pseudoObsVar / 2., K)
        bound -= 0.5 * (pseudoObsVar + K - 1) * safe_log_det(sigT)
        bound += 0.5 * NIW_PSI * np.trace(isigT)

        # and its entropy
        # is a constant which we skip
        
        # distribution over means
        bound -= 0.5 * K * log(1./pseudoObsMeans) * safe_log_det(sigT)
        bound -= 0.5 / pseudoObsMeans * (topicMean).T.dot(isigT).dot(topicMean)
        
        # and its entropy
        bound += 0.5 * safe_log_det(sigT) # +  a constant
        
    
    # Distribution over document topics
    bound -= (D*K)/2. * LN_OF_2_PI
    bound -= D/2. * la.det(sigT)
    diff   = means - topicMean[np.newaxis,:]
    bound -= 0.5 * np.sum (diff.dot(isigT) * diff)
    bound -= 0.5 * np.sum(varcs * np.diag(isigT)[np.newaxis,:]) # = -0.5 * sum_d tr(V_d \Sigma^{-1}) when V_d is diagonal only.
       
    # And its entropy
#     bound += 0.5 * D * K * LN_OF_2_PI_E + 0.5 * np.sum(np.log(varcs)) 
    
    # Distribution over word-topic assignments and words and the formers
    # entropy. This is somewhat jumbled to avoid repeatedly taking the
    # exp and log of the means
    expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
    R = sparseScalarQuotientOfDot(W, expMeans, vocab)  # D x V   [W / TB] is the quotient of the original over the reconstructed doc-term matrix
    V = expMeans * (R.dot(vocab.T)) # D x K
    
    bound += np.sum(docLens * np.log(np.sum(expMeans, axis=1)))
    bound += np.sum(sparseScalarProductOfSafeLnDot(W, expMeans, vocab).data)
    
    bound += np.sum(means * V)
    bound += np.sum(2 * ssp.diags(docLens,0) * means.dot(A) * means)
    bound -= 2. * scaledSelfSoftDot(means, docLens)
    bound -= 0.5 * np.sum(docLens[:,np.newaxis] * V * (np.diag(A))[np.newaxis,:])
    
    bound -= np.sum(means * V) 
    
    
    return bound
Exemplo n.º 6
0
def train (data, modelState, queryState, trainPlan):
    '''
    Infers the topic distributions in general, and specifically for
    each individual datapoint.
    
    Params:
    W - the DxT document-term matrix
    X - The DxF document-feature matrix, which is IGNORED in this case
    modelState - the actual CTM model
    queryState - the query results - essentially all the "local" variables
                 matched to the given observations
    trainPlan  - how to execute the training process (e.g. iterations,
                 log-interval etc.)
                 
    Return:
    A new model object with the updated model (note parameters are
    updated in place, so make a defensive copy if you want itr)
    A new query object with the update query parameters
    '''
    W   = data.words
    D,_ = W.shape
    
    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, diagonalPriorCov, debug = trainPlan.iterations, trainPlan.epsilon, trainPlan.logFrequency, trainPlan.fastButInaccurate, trainPlan.debug
    means, expMeans, varcs, docLens = queryState.means, queryState.expMeans, queryState.varcs, queryState.docLens
    K, topicMean, sigT, vocab, vocabPrior, A, dtype = modelState.K, modelState.topicMean, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.A, modelState.dtype
    
    # Book-keeping for logs
    boundIters, boundValues, likelyValues = [], [], []
    
    debugFn = _debug_with_bound if debug else _debug_with_nothing
    
    # Initialize some working variables
    isigT = la.inv(sigT)
    R = W.copy()
    
    pseudoObsMeans = K + NIW_PSEUDO_OBS_MEAN
    pseudoObsVar   = K + NIW_PSEUDO_OBS_VAR
    priorSigT_diag = np.ndarray(shape=(K,), dtype=dtype)
    priorSigT_diag.fill (NIW_PSI)
    
    # Iterate over parameters
    for itr in range(iterations):
        
        # We start with the M-Step, so the parameters are consistent with our
        # initialisation of the RVs when we do the E-Step
        
        # Update the mean and covariance of the prior
        topicMean = means.sum(axis = 0) / (D + pseudoObsMeans) \
                  if USE_NIW_PRIOR \
                  else means.mean(axis=0)
        debugFn (itr, topicMean, "topicMean", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, A, docLens)
        
        if USE_NIW_PRIOR:
            diff = means - topicMean[np.newaxis,:]
            sigT = diff.T.dot(diff) \
                 + pseudoObsVar * np.outer(topicMean, topicMean)
            sigT += np.diag(varcs.mean(axis=0) + priorSigT_diag)
            sigT /= (D + pseudoObsVar - K)
        else:
            sigT = np.cov(means.T) if sigT.dtype == np.float64 else np.cov(means.T).astype(dtype)
            sigT += np.diag(varcs.mean(axis=0))
           
        if diagonalPriorCov:
            diag = np.diag(sigT)
            sigT = np.diag(diag)
            isigT = np.diag(1./ diag)
        else:
            isigT = la.inv(sigT)

        # FIXME Undo debug
        sigT  = np.eye(K)
        isigT = la.inv(sigT)
        
        debugFn (itr, sigT, "sigT", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, A, docLens)
#        print("                sigT.det = " + str(la.det(sigT)))
        
        
        # Building Blocks - temporarily replaces means with exp(means)
        expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
        R = sparseScalarQuotientOfDot(W, expMeans, vocab, out=R)
        
        # Update the vocabulary
        vocab *= (R.T.dot(expMeans)).T # Awkward order to maintain sparsity (R is sparse, expMeans is dense)
        vocab += vocabPrior
        vocab = normalizerows_ip(vocab)
        
        # Reset the means to their original form, and log effect of vocab update
        R = sparseScalarQuotientOfDot(W, expMeans, vocab, out=R)
        V = expMeans * R.dot(vocab.T)

        debugFn (itr, vocab, "vocab", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, A, docLens)
        
        # And now this is the E-Step, though itr's followed by updates for the
        # parameters also that handle the log-sum-exp approximation.
        
        # Update the Variances: var_d = (2 N_d * A + isigT)^{-1}
        varcs = np.reciprocal(docLens[:,np.newaxis] * (K-1.)/K + np.diagonal(sigT))
        debugFn (itr, varcs, "varcs", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, A, docLens)
        
        # Update the Means
        rhs = V.copy()
        rhs += docLens[:,np.newaxis] * means.dot(A) + isigT.dot(topicMean)
        rhs -= docLens[:,np.newaxis] * rowwise_softmax(means, out=means)
        if diagonalPriorCov:
            means = varcs * rhs
        else:
            for d in range(D):
                means[d, :] = la.inv(isigT + docLens[d] * A).dot(rhs[d, :])
        
#         means -= (means[:,0])[:,np.newaxis]
        
        debugFn (itr, means, "means", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, A, docLens)
        
        if logFrequency > 0 and itr % logFrequency == 0:
            modelState = ModelState(K, topicMean, sigT, vocab, vocabPrior, A, dtype, MODEL_NAME)
            queryState = QueryState(means, expMeans, varcs, docLens)
            
            boundValues.append(var_bound(data, modelState, queryState))
            likelyValues.append(log_likelihood(data, modelState, queryState))
            boundIters.append(itr)
            
            print (time.strftime('%X') + " : Iteration %d: bound %f \t Perplexity: %.2f" % (itr, boundValues[-1], perplexity_from_like(likelyValues[-1], docLens.sum())))
            if len(boundValues) > 1:
                if boundValues[-2] > boundValues[-1]:
                    if debug: printStderr ("ERROR: bound degradation: %f > %f" % (boundValues[-2], boundValues[-1]))
        
                # Check to see if the improvement in the bound has fallen below the threshold
                if itr > 100 and len(likelyValues) > 3 \
                    and abs(perplexity_from_like(likelyValues[-1], docLens.sum()) - perplexity_from_like(likelyValues[-2], docLens.sum())) < 1.0:
                    break

    return \
        ModelState(K, topicMean, sigT, vocab, vocabPrior, A, dtype, MODEL_NAME), \
        QueryState(means, expMeans, varcs, docLens), \
        (np.array(boundIters), np.array(boundValues), np.array(likelyValues))
Exemplo n.º 7
0
def query(data, modelState, queryState, queryPlan):
    '''
    Given a _trained_ model, attempts to predict the topics for each of
    the inputs.
    
    Params:
    data - the dataset of words, features and links of which only words and
           features are used in this model
    modelState - the _trained_ model
    queryState - the query state generated for the query dataset
    queryPlan  - used in this case as we need to tighten up the approx
    
    Returns:
    The model state and query state, in that order. The model state is
    unchanged, the query is.
    '''
    W, X = data.words, data.feats
    D, _ = W.shape
    
    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, fastButInaccurate, debug = queryPlan.iterations, queryPlan.epsilon, queryPlan.logFrequency, queryPlan.fastButInaccurate, queryPlan.debug
    means, expMeans, varcs, n = queryState.means, queryState.expMeans, queryState.varcs, queryState.docLens
    F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, Ab, dtype = modelState.F, modelState.P, modelState.K, modelState.A, modelState.R_A, modelState.fv, modelState.Y, modelState.R_Y, modelState.lfv, modelState.V, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.Ab, modelState.dtype
    
    # Debugging
    debugFn = _debug_with_bound if debug else _debug_with_nothing
    _debug_with_bound.old_bound = 0
    
    # Necessary values
    isigT = la.inv(sigT)

    lastPerp = 1E+300 if dtype is np.float64 else 1E+30
    for itr in range(iterations):
        # Counts of topic assignments
        expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
        R = sparseScalarQuotientOfDot(W, expMeans, vocab)
        S = expMeans * R.dot(vocab.T)

        # the variance
        varcs[:] = 1./((n * (K-1.)/K)[:,np.newaxis] + isigT.flat[::K+1])
        debugFn (itr, varcs, "query-varcs", W, X, None, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, n)
        
        # Update the Means
        rhs = X.dot(A.T).dot(isigT)
        rhs += S
        rhs += n[:,np.newaxis] * means.dot(Ab)
        rhs -= n[:,np.newaxis] * rowwise_softmax(means, out=means)
        
        # Long version
        inverses = dict()
        for d in range(D):
            if not n[d] in inverses:
                inverses[n[d]] = la.inv(isigT + n[d] * Ab)
            lhs = inverses[n[d]]
            means[d,:] = lhs.dot(rhs[d,:])
        debugFn (itr, means, "query-means", W, X, None, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, n)

        like = log_likelihood(data, modelState, QueryState(means, expMeans, varcs, n))
        perp = perplexity_from_like(like, data.word_count)
        if itr > 20 and lastPerp - perp < 1:
            break
        lastPerp = perp

    
    return modelState, queryState # query vars altered in-place
def train(data, modelState, queryState, trainPlan):
    """
    Infers the topic distributions in general, and specifically for
    each individual datapoint.
    
    Params:
    W - the DxT document-term matrix
    X - The DxF document-feature matrix, which is IGNORED in this case
    modelState - the actual CTM model
    queryState - the query results - essentially all the "local" variables
                 matched to the given observations
    trainPlan  - how to execute the training process (e.g. iterations,
                 log-interval etc.)
                 
    Return:
    A new model object with the updated model (note parameters are
    updated in place, so make a defensive copy if you want itr)
    A new query object with the update query parameters
    """
    W, X = data.words, data.feats
    D, T = W.shape
    F = X.shape[1]

    # tmpNumDense = np.array([
    #     4	, 8	, 2	, 0	, 0,
    #     0	, 6	, 0	, 17, 0,
    #     12	, 13	, 1	, 7	, 8,
    #     0	, 5	, 0	, 0	, 0,
    #     0	, 6	, 0	, 0	, 44,
    #     0	, 7	, 2	, 0	, 0], dtype=np.float64).reshape((6,5))
    # tmpNum = ssp.csr_matrix(tmpNumDense)
    #
    # tmpDenomleft = (rd.random((tmpNum.shape[0], 12)) * 5).astype(np.int32).astype(np.float64) / 10
    # tmpDenomRight = (rd.random((12, tmpNum.shape[1])) * 5).astype(np.int32).astype(np.float64)
    #
    # tmpResult = tmpNum.copy()
    # tmpResult = sparseScalarQuotientOfDot(tmpNum, tmpDenomleft, tmpDenomRight)
    #
    # print (str(tmpNum.todense()))
    # print (str(tmpDenomleft.dot(tmpDenomRight)))
    # print (str(tmpResult.todense()))

    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, diagonalPriorCov, debug = (
        trainPlan.iterations,
        trainPlan.epsilon,
        trainPlan.logFrequency,
        trainPlan.fastButInaccurate,
        trainPlan.debug,
    )
    means, docLens = queryState.means, queryState.docLens
    K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior, dtype = (
        modelState.K,
        modelState.A,
        modelState.U,
        modelState.Y,
        modelState.V,
        modelState.covA,
        modelState.tv,
        modelState.ltv,
        modelState.fv,
        modelState.lfv,
        modelState.vocab,
        modelState.vocabPrior,
        modelState.dtype,
    )

    tp, fp, ltp, lfp = 1.0 / tv, 1.0 / fv, 1.0 / ltv, 1.0 / lfv  # turn variances into precisions

    # FIXME Use passed in hypers
    print("tp = %f tv=%f" % (tp, tv))
    vocabPrior = np.ones(shape=(T,), dtype=modelState.dtype)

    # FIXME undo truncation
    F = 363
    A = A[:F, :]
    X = X[:, :F]
    U = U[:F, :]
    data = DataSet(words=W, feats=X)

    # Book-keeping for logs
    boundIters, boundValues, likelyValues = [], [], []

    debugFn = _debug_with_bound if debug else _debug_with_nothing

    # Initialize some working variables
    if covA is None:
        precA = (fp * ssp.eye(F) + X.T.dot(X)).todense()  # As the inverse is almost always dense
        covA = la.inv(precA, overwrite_a=True)  # it's faster to densify in advance
    uniqLens = np.unique(docLens)

    debugFn(-1, covA, "covA", W, X, means, docLens, K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior)

    H = 0.5 * (np.eye(K) - np.ones((K, K), dtype=dtype) / K)

    expMeans = means.copy()
    expMeans = np.exp(means - means.max(axis=1)[:, np.newaxis], out=expMeans)
    R = sparseScalarQuotientOfDot(W, expMeans, vocab, out=W.copy())

    lhs = H.copy()
    rhs = expMeans.copy()
    Y_rhs = Y.copy()

    # Iterate over parameters
    for itr in range(iterations):

        # Update U, V given A
        V = try_solve_sym_pos(Y.T.dot(U.T).dot(U).dot(Y), A.T.dot(U).dot(Y).T).T
        V /= V[0, 0]
        U = try_solve_sym_pos(Y.dot(V.T).dot(V).dot(Y.T), A.dot(V).dot(Y.T).T).T

        # Update Y given U, V, A
        Y_rhs[:, :] = U.T.dot(A).dot(V)

        Sv, Uv = la.eigh(V.T.dot(V), overwrite_a=True)
        Su, Uu = la.eigh(U.T.dot(U), overwrite_a=True)

        s = np.outer(Sv, Su).flatten()
        s += ltv * lfv
        np.reciprocal(s, out=s)

        M = Uu.T.dot(Y_rhs).dot(Uv)
        M *= unvec(s, row_count=M.shape[0])

        Y = Uu.dot(M).dot(Uv.T)
        debugFn(itr, Y, "Y", W, X, means, docLens, K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior)

        A = covA.dot(fp * U.dot(Y).dot(V.T) + X.T.dot(means))
        debugFn(itr, A, "A", W, X, means, docLens, K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior)

        # And now this is the E-Step, though itr's followed by updates for the
        # parameters also that handle the log-sum-exp approximation.

        # TODO One big sort by size, plus batch it.

        # Update the Means

        rhs[:, :] = expMeans
        rhs *= R.dot(vocab.T)
        rhs += X.dot(A) * tp
        rhs += docLens[:, np.newaxis] * means.dot(H)
        rhs -= docLens[:, np.newaxis] * rowwise_softmax(means, out=means)
        for l in uniqLens:
            inds = np.where(docLens == l)[0]
            lhs[:, :] = l * H
            lhs[np.diag_indices_from(lhs)] += tp
            lhs[:, :] = la.inv(lhs)
            means[inds, :] = rhs[inds, :].dot(lhs)  # left and right got switched going from vectors to matrices :-/

        debugFn(itr, means, "means", W, X, means, docLens, K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior)

        # Standard deviation
        # DK        = means.shape[0] * means.shape[1]
        # newTp     = np.sum(means)
        # newTp     = (-newTp * newTp)
        # rhs[:,:]  = means
        # rhs      *= means
        # newTp     = DK * np.sum(rhs) - newTp
        # newTp    /= DK * (DK - 1)
        # newTp     = min(max(newTp, 1E-36), 1E+36)
        # tp        = 1 / newTp
        # if itr % logFrequency == 0:
        #     print ("Iter %3d stdev = %f, prec = %f, np.std^2=%f, np.mean=%f" % (itr, sqrt(newTp), tp, np.std(means.reshape((D*K,))) ** 2, np.mean(means.reshape((D*K,)))))

        # Update the vocabulary
        expMeans = np.exp(means - means.max(axis=1)[:, np.newaxis], out=expMeans)
        R = sparseScalarQuotientOfDot(W, expMeans, vocab, out=R)

        vocab *= (R.T.dot(expMeans)).T  # Awkward order to maintain sparsity (R is sparse, expMeans is dense)
        vocab += vocabPrior
        vocab = normalizerows_ip(vocab)

        debugFn(itr, vocab, "vocab", W, X, means, docLens, K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior)
        # print ("Iter %3d Vocab.min = %f" % (itr, vocab.min()))

        # Update the vocab prior
        # vocabPrior = estimate_dirichlet_param (vocab, vocabPrior)
        # print ("Iter %3d VocabPrior.(min, max) = (%f, %f) VocabPrior.mean=%f" % (itr, vocabPrior.min(), vocabPrior.max(), vocabPrior.mean()))

        if logFrequency > 0 and itr % logFrequency == 0:
            modelState = ModelState(K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior, dtype, modelState.name)
            queryState = QueryState(means, docLens)

            boundValues.append(var_bound(data, modelState, queryState))
            likelyValues.append(log_likelihood(data, modelState, queryState))
            boundIters.append(itr)

            print(
                time.strftime("%X")
                + " : Iteration %d: bound %f \t Perplexity: %.2f"
                % (itr, boundValues[-1], perplexity_from_like(likelyValues[-1], docLens.sum()))
            )
            if len(boundValues) > 1:
                if boundValues[-2] > boundValues[-1]:
                    if debug:
                        printStderr("ERROR: bound degradation: %f > %f" % (boundValues[-2], boundValues[-1]))

                # Check to see if the improvement in the bound has fallen below the threshold
                if (
                    itr > 100
                    and len(likelyValues) > 3
                    and abs(
                        perplexity_from_like(likelyValues[-1], docLens.sum())
                        - perplexity_from_like(likelyValues[-2], docLens.sum())
                    )
                    < 1.0
                ):
                    break

    return (
        ModelState(K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior, dtype, modelState.name),
        QueryState(means, expMeans, docLens),
        (np.array(boundIters), np.array(boundValues), np.array(likelyValues)),
    )
Exemplo n.º 9
0
def train (data, modelState, queryState, trainPlan):
    '''
    Infers the topic distributions in general, and specifically for
    each individual datapoint.
    
    Params:
    data - the dataset of words, features and links of which only words and
           features are used in this model
    modelState - the actual CTM model
    queryState - the query results - essentially all the "local" variables
                 matched to the given observations
    trainPlan  - how to execute the training process (e.g. iterations,
                 log-interval etc.)
                 
    Return:
    A new model object with the updated model (note parameters are
    updated in place, so make a defensive copy if you want it)
    A new query object with the update query parameters
    '''
    W, X = data.words, data.feats

    assert W.dtype == modelState.dtype
    assert X.dtype == modelState.dtype
    
    D,_ = W.shape
    
    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, fastButInaccurate, debug = trainPlan.iterations, trainPlan.epsilon, trainPlan.logFrequency, trainPlan.fastButInaccurate, trainPlan.debug
    means, expMeans, varcs, lxi, s, n = queryState.means, queryState.expMeans, queryState.varcs, queryState.lxi, queryState.s, queryState.docLens
    F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype = modelState.F, modelState.P, modelState.K, modelState.A, modelState.R_A, modelState.fv, modelState.Y, modelState.R_Y, modelState.lfv, modelState.V, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.dtype
    
    # Book-keeping for logs
    boundIters  = np.zeros(shape=(iterations // logFrequency,))
    boundValues = np.zeros(shape=(iterations // logFrequency,))
    likeValues  = np.zeros(shape=(iterations // logFrequency,))
    bvIdx = 0
    
    _debug_with_bound.old_bound = 0
    debugFn = _debug_with_bound if debug else _debug_with_nothing
    
    
    # Initialize some working variables
    isigT = la.inv(sigT)
    R = W.copy()
    sigT_regularizer = 0.001
    
    aI_P = 1./lfv  * ssp.eye(P, dtype=dtype)
    tI_F = 1./fv * ssp.eye(F, dtype=dtype)
    
    print("Creating posterior covariance of A, this will take some time...")
    XTX = X.T.dot(X)
    R_A = XTX
    if ssp.issparse(R_A):
        R_A = R_A.todense()  # dense inverse typically as fast or faster than sparse inverse
    R_A.flat[::F+1] += 1./fv # and the result is usually dense in any case
    R_A = la.inv(R_A)
    print("Covariance matrix calculated, launching inference")
    
    s.fill(0)
    
    # Iterate over parameters
    for itr in range(iterations):
        
        # We start with the M-Step, so the parameters are consistent with our
        # initialisation of the RVs when we do the E-Step
        
        # Update the covariance of the prior
        diff_a_yv = (A-Y.dot(V))
        diff_m_xa = (means-X.dot(A.T))
        
        sigT  = 1./lfv * (Y.dot(Y.T))
        sigT += 1./fv * diff_a_yv.dot(diff_a_yv.T)
        sigT += diff_m_xa.T.dot(diff_m_xa)
        sigT.flat[::K+1] += varcs.sum(axis=0)
        sigT /= (P+F+D)
        sigT.flat[::K+1] += sigT_regularizer
        
        # Diagonalize it
        sigT = np.diag(sigT.flat[::K+1])
        # and invert it.
        isigT = np.diag(np.reciprocal(sigT.flat[::K+1]))
        debugFn (itr, sigT, "sigT", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Building Blocks - temporarily replaces means with exp(means)
        expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
        R = sparseScalarQuotientOfDot(W, expMeans, vocab, out=R)
        S = expMeans * R.dot(vocab.T)
        
        # Update the vocabulary
        vocab *= (R.T.dot(expMeans)).T # Awkward order to maintain sparsity (R is sparse, expMeans is dense)
        vocab += vocabPrior
        vocab = normalizerows_ip(vocab)
        
        # Reset the means to their original form, and log effect of vocab update
        debugFn (itr, vocab, "vocab", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Finally update the parameter V
        V = la.inv(R_Y + Y.T.dot(isigT).dot(Y)).dot(Y.T.dot(isigT).dot(A))
        debugFn (itr, V, "V", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # And now this is the E-Step, though it's followed by updates for the
        # parameters also that handle the log-sum-exp approximation.
        
        # Update the distribution on the latent space
        R_Y_base = aI_P + 1/fv * V.dot(V.T)
        R_Y = la.inv(R_Y_base)
        debugFn (itr, R_Y, "R_Y", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        Y = 1./fv * A.dot(V.T).dot(R_Y)
        debugFn (itr, Y, "Y", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the mapping from the features to topics
        A = (1./fv * (Y).dot(V) + (X.T.dot(means)).T).dot(R_A)
        debugFn (itr, A, "A", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the Means
        vMat   = (s[:,np.newaxis] * lxi - 0.5) * n[:,np.newaxis] + S
        rhsMat = vMat + X.dot(A.T).dot(isigT) # TODO Verify this
        lhsMat = np.reciprocal(np.diag(isigT)[np.newaxis,:] + n[:,np.newaxis] *  lxi)  # inverse of D diagonal matrices...
        means = lhsMat * rhsMat # as LHS is a diagonal matrix for all d, it's equivalent
                                # do doing a hadamard product for all d
        debugFn (itr, means, "means", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the Variances
        varcs = 1./(n[:,np.newaxis] * lxi + isigT.flat[::K+1])
        debugFn (itr, varcs, "varcs", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the approximation parameters
        lxi = 2 * ctm.negJakkolaOfDerivedXi(means, varcs, s)
        debugFn (itr, lxi, "lxi", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # s can sometimes grow unboundedly
        # Follow Bouchard's suggested approach of fixing it at zero
        #
#         s = (np.sum(lxi * means, axis=1) + 0.25 * K - 0.5) / np.sum(lxi, axis=1)
#         debugFn (itr, s, "s", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        if logFrequency > 0 and itr % logFrequency == 0:
            modelState = ModelState(F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, MODEL_NAME)
            queryState = QueryState(means, expMeans, varcs, lxi, s, n)
            
            boundValues[bvIdx] = var_bound(data, modelState, queryState, XTX)
            likeValues[bvIdx]  = log_likelihood(data, modelState, queryState)
            boundIters[bvIdx]  = itr
            perp = perplexity_from_like(likeValues[bvIdx], n.sum())
            print (time.strftime('%X') + " : Iteration %d: Perplexity %4.2f  bound %f" % (itr, perp, boundValues[bvIdx]))
            if bvIdx > 0 and  boundValues[bvIdx - 1] > boundValues[bvIdx]:
                printStderr ("ERROR: bound degradation: %f > %f" % (boundValues[bvIdx - 1], boundValues[bvIdx]))
#             print ("Means: min=%f, avg=%f, max=%f\n\n" % (means.min(), means.mean(), means.max()))

            # Check to see if the improvment in the likelihood has fallen below the threshold
            if bvIdx > 1 and boundIters[bvIdx] > 50:
                lastPerp = perplexity_from_like(likeValues[bvIdx - 1], n.sum())
                if lastPerp - perp < 1:
                    boundIters, boundValues, likelyValues = clamp (boundIters, boundValues, likeValues, bvIdx)
                    return modelState, queryState, (boundIters, boundValues, likeValues)
            bvIdx += 1


    return \
        ModelState(F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, MODEL_NAME), \
        QueryState(means, expMeans, varcs, lxi, s, n), \
        (boundIters, boundValues, likeValues)
Exemplo n.º 10
0
def query(dataset, modelState, queryState, queryPlan):
    '''
    Given a _trained_ model, attempts to predict the topics for each of
    the inputs.
    
    Params:
    data - the dataset of words, features and links of which only words are used in this model
    modelState - the _trained_ model
    queryState - the query state generated for the query dataset
    queryPlan  - used in this case as we need to tighten up the approx
    
    Returns:
    The model state and query state, in that order. The model state is
    unchanged, the query is.
    '''
    W = dataset.words
    D = W.shape[0]
    
    iterations, epsilon, logFrequency, fastButInaccurate, debug = queryPlan.iterations, queryPlan.epsilon, queryPlan.logFrequency, queryPlan.fastButInaccurate, queryPlan.debug
    means, expMeans, varcs, lxi, s, n = queryState.means, queryState.expMeans, queryState.varcs, queryState.lxi, queryState.s, queryState.docLens
    K, topicMean, sigT, vocab, vocabPrior, dtype = modelState.K, modelState.topicMean, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.dtype
    
    # Necessary temp variables (notably the count of topic to word assignments
    # per topic per doc)
    isigT = la.inv(sigT)
    expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
    R = sparseScalarQuotientOfDot(W, expMeans, vocab)
    S = expMeans * R.dot(vocab.T)
        
    # Enable logging or not. If enabled, we need the inner product of the feat matrix
    debugFn = _debug_with_bound if debug else _debug_with_nothing
    
    # Iterate over parameters
    lastPerp = 1E+300 if dtype is np.float64 else 1E+30
    for itr in range(iterations):
        # Update the Means
        vMat   = (s[:,np.newaxis] * lxi - 0.5) * n[:,np.newaxis] + S
        rhsMat = vMat + isigT.dot(topicMean)
        for d in range(D):
            try:
                means[d,:] = la.inv(isigT + ssp.diags(n[d] * lxi[d,:], 0)).dot(rhsMat[d,:])
            except ValueError as e:
                print(str(e))
                print ("Ah")
        debugFn (itr, means, "means", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the Variances
        varcs = 1./(n[:,np.newaxis] * lxi + isigT.flat[::K+1])
        debugFn (itr, varcs, "varcs", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the approximation parameters
        lxi = 2 * negJakkolaOfDerivedXi(means, varcs, s)
        debugFn (itr, lxi, "lxi", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # s can sometimes grow unboundedly
        # Follow Bouchard's suggested approach of fixing it at zero
        #
        s = (np.sum(lxi * means, axis=1) + 0.25 * K - 0.5) / np.sum(lxi, axis=1)
        debugFn (itr, s, "s", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)

        like = log_likelihood(dataset, modelState, QueryState(means, expMeans, varcs, lxi, s, n))
        perp = perplexity_from_like(like, dataset.word_count)
        if itr > 20 and lastPerp - perp < 1:
            break
        lastPerp = perp

    return modelState, QueryState (means, expMeans, varcs, lxi, s, n)
Exemplo n.º 11
0
def train (dataset, modelState, queryState, trainPlan):
    '''
    Infers the topic distributions in general, and specifically for
    each individual datapoint.
    
    Params:
    data - the dataset of words, features and links of which only words are used in this model
    modelState - the actual CTM model
    queryState - the query results - essentially all the "local" variables
                 matched to the given observations
    trainPlan  - how to execute the training process (e.g. iterations,
                 log-interval etc.)
                 
    Return:
    A new model object with the updated model (note parameters are
    updated in place, so make a defensive copy if you want it)
    A new query object with the update query parameters
    '''
    W   = dataset.words
    D,_ = W.shape
    
    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, diagonalPriorCov, debug = trainPlan.iterations, trainPlan.epsilon, trainPlan.logFrequency, trainPlan.fastButInaccurate, trainPlan.debug
    means, expMeans, varcs, lxi, s, n = queryState.means, queryState.expMeans, queryState.varcs, queryState.lxi, queryState.s, queryState.docLens
    K, topicMean, sigT, vocab, vocabPrior, dtype = modelState.K, modelState.topicMean, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.dtype
    
    # Book-keeping for logs
    boundIters   = np.zeros(shape=(iterations // logFrequency,))
    boundValues  = np.zeros(shape=(iterations // logFrequency,))
    likelyValues = np.zeros(shape=(iterations // logFrequency,))
    bvIdx = 0
    
    debugFn = _debug_with_bound if debug else _debug_with_nothing
    
    # Initialize some working variables
    isigT = la.inv(sigT)
    R = W.copy()
    
    s.fill(0)
    priorSigt_diag = np.ndarray(shape=(K,), dtype=dtype)
    priorSigt_diag.fill (0.1)
    kappa = K + 2

    expMeans = means.copy()
    
    # Iterate over parameters
    for itr in range(iterations):
        
        # We start with the M-Step, so the parameters are consistent with our
        # initialisation of the RVs when we do the E-Step
        
        # Update the mean and covariance of the prior
#        topicMean = means.mean(axis = 0)
        topicMean = means.sum(axis=0) / (D + kappa) \
                    if USE_NIW_PRIOR \
                    else means.mean(axis=0)
        debugFn (itr, topicMean, "topicMean", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)

        # diff = means - topicMean
        # sigT = diff.T.dot(diff) / D

        sigT, _ = oas(means, assume_centered=False)
        if dtype is not np.float64:
            sigT = sigT.astype(dtype)

        sigT += np.diag(varcs.mean(axis=0))

        if USE_NIW_PRIOR:
            sigT.flat[::K+1] += priorSigt_diag
            sigT += (kappa * D)/(kappa + D) * np.outer(topicMean, topicMean)

        # Building blocks...
        # 1/4 Create the precision matrix from the covariance
        if True or diagonalPriorCov:
            diag = np.diag(sigT)
            sigT = np.diag(diag)
            isigT = np.diag(1. / diag)
        else:
            isigT = la.inv(sigT)
        
        debugFn (itr, sigT, "sigT", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
#        print ("         Det sigT = " + str(la.det(sigT)))
        
        # 2/4 temporarily replace means with exp(means)
        expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
        R = sparseScalarQuotientOfDot(W, expMeans, vocab, out=R)
        # S = expMeans * R.dot(vocab.T)
        
        # 3/4 Update the vocabulary
        vocab *= (R.T.dot(expMeans)).T # Awkward order to maintain sparsity (R is sparse, expMeans is dense)
        vocab += vocabPrior
        vocab = normalizerows_ip(vocab)

        R = sparseScalarQuotientOfDot(W, expMeans, vocab, out=R)
        S = expMeans * R.dot(vocab.T)
        
        # 4/4 Reset the means to their original form, and log effect of vocab update
        #means = np.log(expMeans, out=expMeans)
        debugFn (itr, vocab, "vocab", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # And now this is the E-Step, though it's followed by updates for the
        # parameters also that handle the log-sum-exp approximation.
        
        # Update the Variances
        varcs = np.reciprocal(n[:,np.newaxis] * lxi + isigT.flat[::K+1])
        debugFn (itr, varcs, "varcs", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the Means
        vMat   = (s[:,np.newaxis] * lxi - 0.5) * n[:,np.newaxis] + S
        rhsMat = vMat + isigT.dot(topicMean)
        # for d in range(D):
        #     means[d,:] = la.inv(isigT + ssp.diags(n[d] * lxi[d,:], 0)).dot(rhsMat[d,:])
        means = varcs * rhsMat

        means -= (means[:,0])[:,np.newaxis]
        debugFn (itr, means, "means", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the approximation parameters
        lxi = 2 * negJakkolaOfDerivedXi(means, varcs, s)
        debugFn (itr, lxi, "lxi", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # s can sometimes grow unboundedly
        # If so Bouchard's suggested approach of fixing it at zero
        #
        #s = (np.sum(lxi * means, axis=1) + 0.25 * K - 0.5) / np.sum(lxi, axis=1)
        debugFn (itr, s, "s", W, K, topicMean, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        if logFrequency > 0 and itr % logFrequency == 0:
            modelState = ModelState(K, topicMean, sigT, vocab, vocabPrior, dtype, MODEL_NAME)
            queryState = QueryState(means, expMeans, varcs, lxi, s, n)
            
            boundValues[bvIdx]  = var_bound(dataset, modelState, queryState)
            likelyValues[bvIdx] = log_likelihood(dataset, modelState, queryState)
            boundIters[bvIdx]   = itr
            perp = perplexity_from_like(likelyValues[bvIdx], n.sum())
            
            print (time.strftime('%X') + " : Iteration %5d: Perplexity %4.2f  Bound %10.2f " % (itr, perp, boundValues[bvIdx]))
            if bvIdx > 0 and  boundValues[bvIdx - 1] > boundValues[bvIdx]:
                printStderr ("ERROR: bound degradation: %f > %f" % (boundValues[bvIdx - 1], boundValues[bvIdx]))
#             print ("Means: min=%f, avg=%f, max=%f\n\n" % (means.min(), means.mean(), means.max()))

            # Check to see if the improvment in the likelihood has fallen below the threshold
            if bvIdx > 1 and boundIters[bvIdx] >= 30:
                lastPerp = perplexity_from_like(likelyValues[bvIdx - 1], n.sum())
                if lastPerp - perp < 1:
                    boundIters, boundValues, likelyValues = clamp (boundIters, boundValues, likelyValues, bvIdx)
                    return modelState, queryState, (boundIters, boundValues, likelyValues)
            bvIdx += 1
            
    
    return \
        ModelState(K, topicMean, sigT, vocab, vocabPrior, dtype, MODEL_NAME), \
        QueryState(means, expMeans, varcs, lxi, s, n), \
        (boundIters, boundValues, likelyValues)
Exemplo n.º 12
0
def var_bound(data, modelState, queryState, XTX=None):
    '''
    Determines the variational bounds. Values are mutated in place, but are
    reset afterwards to their initial values. So it's safe to call in a serial
    manner.
    '''
    
    # Unpack the the structs, for ease of access and efficiency
    W, X = data.words, data.feats
    D, _ = W.shape
    means, expMeans, varcs, docLens = queryState.means, queryState.expMeans, queryState.varcs, queryState.docLens
    F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, Ab, dtype = modelState.F, modelState.P, modelState.K, modelState.A, modelState.R_A, modelState.fv, modelState.Y, modelState.R_Y, modelState.lfv, modelState.V, modelState.sigT, modelState.vocab, modelState.Ab, modelState.dtype
    
    # Calculate some implicit  variables
    isigT = la.inv(sigT)
    lnDetSigT = lnDetOfDiagMat(sigT)
    verifyProper(lnDetSigT, "lnDetSigT")
    
    if XTX is None:
        XTX = X.T.dot(X)
    
    bound = 0
    
    # Distribution over latent space
    bound -= (P*K)/2. * LN_OF_2_PI
    bound -= P * lnDetSigT
    bound -= K * P * log(lfv)
    bound -= 0.5 * np.sum(1./lfv * isigT.dot(Y) * Y)
    bound -= 0.5 * K * np.trace(R_Y)
    
    # And its entropy
    detR_Y = safeDet(R_Y, "R_Y")
    bound += 0.5 * LN_OF_2_PI_E + P/2. * lnDetSigT + K/2. * log(detR_Y)
    
    # Distribution over mapping from features to topics
    diff   = (A - Y.dot(V))
    bound -= (F*K)/2. * LN_OF_2_PI
    bound -= F * lnDetSigT
    bound -= K * P * log(fv)
    bound -= 0.5 * np.sum (1./lfv * isigT.dot(diff) * diff)
    bound -= 0.5 * K * np.trace(R_A)
    
    # And its entropy
    detR_A = safeDet(R_A, "R_A")
    bound += 0.5 * LN_OF_2_PI_E + F/2. * lnDetSigT + K/2. * log(detR_A)
    
    # Distribution over document topics
    bound -= (D*K)/2. * LN_OF_2_PI
    bound -= D/2. * lnDetSigT
    diff   = means - X.dot(A.T)
    bound -= 0.5 * np.sum (diff.dot(isigT) * diff)
    bound -= 0.5 * np.sum(varcs * np.diag(isigT)[np.newaxis,:]) # = -0.5 * sum_d tr(V_d \Sigma^{-1}) when V_d is diagonal only.
    bound -= 0.5 * K * np.trace(XTX.dot(R_A))
       
    # And its entropy
    bound += 0.5 * D * K * LN_OF_2_PI_E + 0.5 * np.sum(np.log(varcs)) 
        
    # Distribution over word-topic assignments, and their entropy
    # and distribution over words. This is re-arranged as we need 
    # means for some parts, and exp(means) for other parts
    expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
    R = sparseScalarQuotientOfDot(W, expMeans, vocab)  # D x V   [W / TB] is the quotient of the original over the reconstructed doc-term matrix
    S = expMeans * (R.dot(vocab.T)) # D x K
    
    bound += np.sum(docLens * np.log(np.sum(expMeans, axis=1)))
    bound += np.sum(sparseScalarProductOfSafeLnDot(W, expMeans, vocab).data)

    bound += np.sum(means * S)
    bound += np.sum(2 * ssp.diags(docLens,0) * means.dot(Ab) * means)
    bound -= 2. * scaledSelfSoftDot(means, docLens)
    bound -= 0.5 * np.sum(docLens[:,np.newaxis] * S * (np.diag(Ab))[np.newaxis,:])
    
    bound -= np.sum(means * S) 
    
    return bound
Exemplo n.º 13
0
def var_bound(data, modelState, queryState):
    '''
    Determines the variational bounds. Values are mutated in place, but are
    reset afterwards to their initial values. So it's safe to call in a serial
    manner.
    '''
    
    # Unpack the the structs, for ease of access and efficiency
    W, L, X  = data.words, data.links, data.feats
    D,_ = W.shape
    means, varcs, docLens = queryState.means, queryState.varcs, queryState.docLens
    K, topicMean, topicCov, vocab, A = modelState.K, modelState.topicMean, modelState.topicCov, modelState.vocab, modelState.A
    
    # Calculate some implicit  variables
    itopicCov = la.inv(topicCov)
    
    bound = 0

    expMeansOut = np.exp(means - means.max(axis=1)[:, np.newaxis])
    expMeansIn  = np.exp(means - means.max(axis=0)[np.newaxis, :])
    lse_at_k    = expMeansIn.sum(axis=0)
    
    if USE_NIW_PRIOR:
        pseudoObsMeans = K + NIW_PSEUDO_OBS_MEAN
        pseudoObsVar   = K + NIW_PSEUDO_OBS_VAR

        # distribution over topic covariance
        bound -= 0.5 * K * pseudoObsVar * log(NIW_PSI)
        bound -= 0.5 * K * pseudoObsVar * log(2)
        bound -= fns.multigammaln(pseudoObsVar / 2., K)
        bound -= 0.5 * (pseudoObsVar + K - 1) * safe_log_det(topicCov)
        bound += 0.5 * NIW_PSI * np.trace(itopicCov)

        # and its entropy
        # is a constant which we skip
        
        # distribution over means
        bound -= 0.5 * K * log(1./pseudoObsMeans) * safe_log_det(topicCov)
        bound -= 0.5 / pseudoObsMeans * (topicMean).T.dot(itopicCov).dot(topicMean)
        
        # and its entropy
        bound += 0.5 * safe_log_det(topicCov) # +  a constant
        
    
    # Distribution over document topics
    bound -= (D*K)/2. * LN_OF_2_PI
    bound -= D/2. * la.det(topicCov)
    diff   = means - topicMean[np.newaxis,:]
    bound -= 0.5 * np.sum (diff.dot(itopicCov) * diff)
    bound -= 0.5 * np.sum(varcs * np.diag(itopicCov)[np.newaxis,:]) # = -0.5 * sum_d tr(V_d \Sigma^{-1}) when V_d is diagonal only.
       
    # And its entropy
#     bound += 0.5 * D * K * LN_OF_2_PI_E + 0.5 * np.sum(np.log(varcs)) 


    # Distribution over word-topic assignments and words and the formers
    # entropy, and similaarly for out-links. This is somewhat jumbled to
    # avoid repeatedly taking the exp and log of the means
    W_weights  = sparseScalarQuotientOfDot(W, expMeansOut, vocab)  # D x V   [W / TB] is the quotient of the original over the reconstructed doc-term matrix
    w_top_sums = expMeansOut * (W_weights.dot(vocab.T)) # D x K

    L_weights  = sparseScalarQuotientOfNormedDot(L, expMeansOut, expMeansIn, lse_at_k)
    l_top_sums = L_weights.dot(expMeansIn) / lse_at_k[np.newaxis, :] * expMeansOut
    
    bound += np.sum(docLens * np.log(np.sum(expMeansOut, axis=1)))
    bound += np.sum(sparseScalarProductOfSafeLnDot(W, expMeansOut, vocab).data)
    # means = np.log(expMeans, out=expMeans)
    #means = safe_log(expMeansOut, out=means)
    
    bound += np.sum(means * w_top_sums)
    bound += np.sum(2 * ssp.diags(docLens,0) * means.dot(A) * means)
    bound -= 2. * scaledSelfSoftDot(means, docLens)
    bound -= 0.5 * np.sum(docLens[:,np.newaxis] * w_top_sums * (np.diag(A))[np.newaxis,:])
    
    bound -= np.sum(means * w_top_sums)
    
    
    return bound
Exemplo n.º 14
0
def query(data, modelState, queryState, queryPlan):
    '''
    Given a _trained_ model, attempts to predict the topics for each of
    the inputs. The assumption is that there are no out-links associated
    with the documents, and that no documents in the training set link
    to any of these documents in the query set.

    The word and link vocabularies are kept fixed. Due to the assumption
    of no in-links, we don't learn the prior in-document covariance, nor
    the posterior distribution over in-links. Also, we don't modify

    
    Params:
    data - the dataset of words, features and links of which only words are used in this model
    modelState - the _trained_ model
    queryState - the query state generated for the query dataset
    queryPlan  - used in this case as we need to tighten up the approx
    
    Returns:
    The model state and query state, in that order. The model state is
    unchanged, the query is.
    '''
    W, L, LT, X = data.words, data.links, ssp.csr_matrix(data.links.T), data.feats
    D,_ = W.shape
    out_links = np.squeeze(np.asarray(data.links.sum(axis=1)))

    # Book-keeping for logs
    boundIters, boundValues, likelyValues = [], [], []

    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, diagonalPriorCov, debug = queryPlan.iterations, queryPlan.epsilon, queryPlan.logFrequency, queryPlan.fastButInaccurate, queryPlan.debug
    outMeans, outVarcs, inMeans, inVarcs, inDocCov, docLens = queryState.outMeans, queryState.outVarcs, queryState.inMeans, queryState.inVarcs, queryState.inDocCov, queryState.docLens
    K, topicMean, topicCov, outDocCov, vocab, A, dtype = modelState.K, modelState.topicMean, modelState.topicCov, modelState.outDocCov, modelState.vocab, modelState.A, modelState.dtype

    emit_counts = docLens + out_links

    # Initialize some working variables
    W_weight  = W.copy()

    outDocPre = 1./outDocCov
    inDocPre  = np.reciprocal(inDocCov)
    itopicCov = la.inv(topicCov)

    # Iterate over parameters
    for itr in range(iterations):
        # We start with the M-Step, so the parameters are consistent with our
        # initialisation of the RVs when we do the E-Step

        expMeansRow = np.exp(outMeans - outMeans.max(axis=1)[:, np.newaxis])
        W_weight   = sparseScalarQuotientOfDot(W, expMeansRow, vocab, out=W_weight)
        w_top_sums = W_weight.dot(vocab.T) * expMeansRow

        # Update the posterior variances
        outVarcs = np.reciprocal(emit_counts[:, np.newaxis] * (K-1)/(2*K) + (outDocPre + inDocPre[:,np.newaxis]) * np.diagonal(itopicCov)[np.newaxis,:])

        # Update the out-means and in-means
        out_rhs  = w_top_sums.copy()
        # No link outputs to model.
        out_rhs += itopicCov.dot(topicMean) / outDocCov
        out_rhs += emit_counts[:, np.newaxis] * (outMeans.dot(A) - rowwise_softmax(outMeans))

        for d in range(D):
            outCov          = la.inv(outDocPre * itopicCov + emit_counts[d] * A)
            outMeans[d, :]  = outCov.dot(out_rhs[d,:])

        if logFrequency > 0 and itr % logFrequency == 0:
            modelState = ModelState(K, topicMean, topicCov, outDocCov, vocab, A, True, dtype, MODEL_NAME)
            queryState = QueryState(outMeans, outVarcs, inMeans, inVarcs, inDocCov, docLens)

            boundValues.append(0)
            likelyValues.append(log_likelihood(data, modelState, queryState))
            boundIters.append(itr)

            print (time.strftime('%X') + " : Iteration %d: bound %f \t Perplexity: %.2f" % (itr, boundValues[-1], perplexity_from_like(likelyValues[-1], docLens.sum())))
            if len(boundValues) > 1:
                # Check to see if the improvement in the bound has fallen below the threshold
                if itr > MinItersBeforeEarlyStop and abs(perplexity_from_like(likelyValues[-1], docLens.sum()) - perplexity_from_like(likelyValues[-2], docLens.sum())) < 1.0:
                    break

    return \
        ModelState(K, topicMean, topicCov, outDocCov, vocab, A, True, dtype, MODEL_NAME), \
        QueryState(outMeans, outVarcs, inMeans, inVarcs, inDocCov, docLens)
Exemplo n.º 15
0
def query(data, modelState, queryState, queryPlan):
    '''
    Given a _trained_ model, attempts to predict the topics for each of
    the inputs.
    
    Params:
    data - the dataset of words, features and links of which only words and
           features are used in this model
    modelState - the _trained_ model
    queryState - the query state generated for the query dataset
    queryPlan  - used in this case as we need to tighten up the approx
    
    Returns:
    The model state and query state, in that order. The model state is
    unchanged, the query is.
    '''
    iterations, epsilon, logFrequency, fastButInaccurate, debug = queryPlan.iterations, queryPlan.epsilon, queryPlan.logFrequency, queryPlan.fastButInaccurate, queryPlan.debug
    means, expMeans, varcs, lxi, s, n = queryState.means, queryState.expMeans, queryState.varcs, queryState.lxi, queryState.s, queryState.docLens
    F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype = modelState.F, modelState.P, modelState.K, modelState.A, modelState.R_A, modelState.fv, modelState.Y, modelState.R_Y, modelState.lfv, modelState.V, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.dtype

    # Necessary temp variables (notably the count of topic to word assignments
    # per topic per doc)
    isigT = la.inv(sigT)
        
    W,X = data.words, data.feats
        
    # Enable logging or not. If enabled, we need the inner product of the feat matrix
    if debug:
        XTX = X.T.dot(X)
        debugFn = _debug_with_bound
        _debug_with_bound.old_bound=0
    else:
        XTX = None
        debugFn = _debug_with_nothing
    
    # Iterate over parameters
    lastPerp = 1E+300 if dtype is np.float64 else 1E+30
    for itr in range(iterations):
        # Estimate Z_dvk
        expMeans = np.exp(means - means.max(axis=1)[:,np.newaxis], out=expMeans)
        R = sparseScalarQuotientOfDot(W, expMeans, vocab)
        S = expMeans * R.dot(vocab.T)
        
        # Update the Means
        vMat   = (2  * s[:,np.newaxis] * lxi - 0.5) * n[:,np.newaxis] + S
        rhsMat = vMat + X.dot(A.T).dot(isigT) # TODO Verify this
        lhsMat = np.reciprocal(np.diag(isigT)[np.newaxis,:] + n[:,np.newaxis] * 2 * lxi)  # inverse of D diagonal matrices...
        means = lhsMat * rhsMat # as LHS is a diagonal matrix for all d, it's equivalent
                                # to doing a hadamard product for all d
        debugFn (itr, means, "query-means", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the Variances
        varcs = 1./(2 * n[:,np.newaxis] * lxi + isigT.flat[::K+1])
        debugFn (itr, varcs, "query-varcs", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # Update the approximation parameters
        lxi = ctm.negJakkolaOfDerivedXi(means, varcs, s)
        debugFn (itr, lxi, "query-lxi", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)
        
        # s can sometimes grow unboundedly
        # Follow Bouchard's suggested approach of fixing it at zero
        #
#         s = (np.sum(lxi * means, axis=1) + 0.25 * K - 0.5) / np.sum(lxi, axis=1)
#         debugFn (itr, s, "s", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, lxi, s, n)

        like = log_likelihood(data, modelState, QueryState(means, expMeans, varcs, lxi, s, n))
        perp = perplexity_from_like(like, data.word_count)
        if itr > 20 and lastPerp - perp < 1:
            break
        lastPerp = perp

    return modelState, QueryState (means, expMeans, varcs, lxi, s, n)
Exemplo n.º 16
0
def var_bound(data, modelState, queryState):
    '''
    Determines the variational bounds. Values are mutated in place, but are
    reset afterwards to their initial values. So it's safe to call in a serial
    manner.
    '''
    
    # Unpack the the structs, for ease of access and efficiency
    W, L, X  = data.words, data.links, data.feats
    D,_ = W.shape
    outMeans, outVarcs, inMeans, inVarcs, inDocCov, docLens = queryState.outMeans, queryState.outVarcs, queryState.inMeans, queryState.inVarcs, queryState.inDocCov, queryState.docLens
    K, topicMean, topicCov, outDocCov, vocab, A, dtype = modelState.K, modelState.topicMean, modelState.topicCov, modelState.outDocCov, modelState.vocab, modelState.A, modelState.dtype

    # Calculate some implicit  variables
    itopicCov = la.inv(topicCov)
    
    bound = 0

    expMeansOut = np.exp(outMeans - outMeans.max(axis=1)[:, np.newaxis])
    expMeansIn  = np.exp(inMeans - inMeans.max(axis=0)[np.newaxis, :])
    lse_at_k    = expMeansIn.sum(axis=0)

    # Distribution over document topics
    bound -= (D*K)/2. * LN_OF_2_PI
    bound -= D/2. * safe_log_det(outDocCov * topicCov)
    diff   = outMeans - topicMean[np.newaxis,:]
    bound -= 0.5 * np.sum (diff.dot(itopicCov) * diff * 1./outDocCov)
    bound -= (0.5 / outDocCov) * np.sum(outVarcs * np.diag(itopicCov)[np.newaxis,:]) # = -0.5 * sum_d tr(V_d \Sigma^{-1}) when V_d is diagonal only.

    # And its entropy
    bound += 0.5 * D * K * LN_OF_2_PI_E + 0.5 * np.log(outVarcs).sum()

    # Distribution over document in-links
    inDocPre = np.reciprocal(inDocCov)
    bound -= (D*K)/2. * LN_OF_2_PI
    bound -= D/2. * safe_log_det(topicCov)
    bound -= K/2 * safe_log(inDocCov).sum()
    diff   = inMeans - outMeans
    bound -= 0.5 * np.sum (diff.dot(itopicCov) * diff * inDocPre[:,np.newaxis])
    bound -= 0.5 * np.sum((inVarcs * inDocPre[:,np.newaxis]) * np.diag(itopicCov)[np.newaxis,:]) # = -0.5 * sum_d tr(V_d \Sigma^{-1}) when V_d is diagonal only.

    # And its entropy
    bound += 0.5 * D * K * LN_OF_2_PI_E + 0.5 * np.log(inVarcs).sum()

    # Distribution over topic assignments E[p(Z)] and E[p(Y)]
    W_weights  = sparseScalarQuotientOfDot(W, expMeansOut, vocab)  # D x V   [W / TB] is the quotient of the original over the reconstructed doc-term matrix
    top_sums   = expMeansOut * (W_weights.dot(vocab.T)) # D x K

    L_weights  = sparseScalarQuotientOfNormedDot(L, expMeansOut, expMeansIn, lse_at_k)
    top_sums  += expMeansOut * (L_weights.dot(expMeansIn) / lse_at_k[np.newaxis, :])

    # E[p(Z,Y)]
    linkLens = np.squeeze(np.array(L.sum(axis=1)))
    bound += np.sum(outMeans * top_sums)
    bound -= np.sum((docLens + linkLens) * np.log(np.sum(expMeansOut, axis=1)))

    # H[Z]
    bound += ((W_weights.dot(vocab.T)) * expMeansOut * outMeans).sum() \
           + ((W_weights.dot((np.log(vocab) * vocab).T)) * expMeansOut).sum() \
           - np.trace(sparseScalarProductOfSafeLnDot(W_weights, expMeansOut, vocab).dot(vocab.T).dot(expMeansOut.T))

    # H[Y]
    docVocab = (expMeansIn / lse_at_k[np.newaxis,:]).T.copy()
    bound += ((L_weights.dot(docVocab.T)) * expMeansOut * outMeans).sum() \
           + ((L_weights.dot((np.log(docVocab) * docVocab).T)) * expMeansOut).sum() \
           - np.trace(sparseScalarProductOfSafeLnDot(L_weights, expMeansOut, docVocab).dot(docVocab.T).dot(expMeansOut.T))

    # E[p(W)]
    vlv = np.log(vocab) * vocab
    bound += np.trace(expMeansOut.T.dot(W_weights.dot(vlv.T)))

    # E[p(L)
    dld = np.log(docVocab) * docVocab
    bound += np.trace(expMeansOut.T.dot(L_weights.dot(dld.T)))

    return bound
Exemplo n.º 17
0
def train (data, modelState, queryState, trainPlan):
    '''
    Infers the topic distributions in general, and specifically for
    each individual datapoint.
    
    Params:
    data - the dataset of words, features and links of which only words and
           features are used in this model
    modelState - the actual CTM model
    queryState - the query results - essentially all the "local" variables
                 matched to the given observations
    trainPlan  - how to execute the training process (e.g. iterations,
                 log-interval etc.)
                 
    Return:
    A new model object with the updated model (note parameters are
    updated in place, so make a defensive copy if you want itr)
    A new query object with the update query parameters
    '''
    W, X = data.words, data.feats
    D, _ = W.shape
    
    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, fastButInaccurate, debug = trainPlan.iterations, trainPlan.epsilon, trainPlan.logFrequency, trainPlan.fastButInaccurate, trainPlan.debug
    means, expMeans, varcs, docLens = queryState.means, queryState.expMeans, queryState.varcs, queryState.docLens
    F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, Ab, dtype = modelState.F, modelState.P, modelState.K, modelState.A, modelState.R_A, modelState.fv, modelState.Y, modelState.R_Y, modelState.lfv, modelState.V, modelState.sigT, modelState.vocab, modelState.vocabPrior, modelState.Ab, modelState.dtype
    
    # Book-keeping for logs
    boundIters  = np.zeros(shape=(iterations // logFrequency,))
    boundValues = np.zeros(shape=(iterations // logFrequency,))
    boundLikes = np.zeros(shape=(iterations // logFrequency,))
    bvIdx = 0
    debugFn = _debug_with_bound if debug else _debug_with_nothing
    _debug_with_bound.old_bound = 0
    
    # For efficient inference, we need a separate covariance for every unique
    # document length. For products to execute quickly, the doc-term matrix
    # therefore needs to be ordered in ascending terms of document length
    originalDocLens = docLens
    sortIdx = np.argsort(docLens, kind=STABLE_SORT_ALG) # sort needs to be stable in order to be reversible
    W = W[sortIdx,:] # deep sorted copy
    X = X[sortIdx,:]
    means, varcs = means[sortIdx,:], varcs[sortIdx,:]

    docLens = originalDocLens[sortIdx]
    
    lens, inds = np.unique(docLens, return_index=True)
    inds = np.append(inds, [W.shape[0]])
    
    # Initialize some working variables
    R = W.copy()
    
    aI_P = 1./lfv  * ssp.eye(P, dtype=dtype)
    
    print("Creating posterior covariance of A, this will take some time...")
    XTX = X.T.dot(X)
    R_A = XTX
    R_A = R_A.todense()      # dense inverse typically as fast or faster than sparse inverse
    R_A.flat[::F+1] += 1./fv # and the result is usually dense in any case
    R_A = la.inv(R_A)
    print("Covariance matrix calculated, launching inference")


    diff_m_xa = (means-X.dot(A.T))
    means_cov_with_x_a = diff_m_xa.T.dot(diff_m_xa)

    expMeans = np.zeros((BatchSize, K), dtype=dtype)
    R = np.zeros((BatchSize, K), dtype=dtype)
    S = np.zeros((BatchSize, K), dtype=dtype)
    vocabScale = np.ones(vocab.shape, dtype=dtype)
    
    # Iterate over parameters
    batchIter = 0
    for itr in range(iterations):
        
        # We start with the M-Step, so the parameters are consistent with our
        # initialisation of the RVs when we do the E-Step

        # Update the covariance of the prior
        diff_a_yv = (A-Y.dot(V))
        sigT  = 1./lfv * (Y.dot(Y.T))
        sigT += 1./fv * diff_a_yv.dot(diff_a_yv.T)
        sigT += means_cov_with_x_a
        sigT.flat[::K+1] += varcs.sum(axis=0)

        # As small numbers lead to instable inverse estimates, we use the
        # fact that for a scalar a, (a .* X)^-1 = 1/a * X^-1 and use these
        # scales whenever we use the inverse of the unscaled covariance
        sigScale  = 1. / (P+D+F)
        isigScale = 1. / sigScale

        isigT = la.inv(sigT)
        debugFn (itr, sigT, "sigT", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, docLens)
        
        # Update the vocabulary
        # vocab *= vocabScale
        # vocab += vocabPrior
        # vocab = normalizerows_ip(vocab)
        # debugFn (itr, vocab, "vocab", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, docLens)
        
        # Finally update the parameter V
        V = la.inv(sigScale * R_Y + Y.T.dot(isigT).dot(Y)).dot(Y.T.dot(isigT).dot(A))
        debugFn (itr, V, "V", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, docLens)
        
        
        #
        # And now this is the E-Step
        # 
        
        # Update the distribution on the latent space
        R_Y_base = aI_P + 1/fv * V.dot(V.T)
        R_Y = la.inv(R_Y_base)
        debugFn (itr, R_Y, "R_Y", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, docLens)
        
        Y = 1./fv * A.dot(V.T).dot(R_Y)
        debugFn (itr, Y, "Y", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, docLens)
        
        # Update the mapping from the features to topics
        A = (1./fv * Y.dot(V) + (X.T.dot(means)).T).dot(R_A)
        debugFn (itr, A, "A", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, docLens)
        
        # Update the Variances
        varcs = 1./((docLens * (K-1.)/K)[:,np.newaxis] + isigScale * isigT.flat[::K+1])
        debugFn (itr, varcs, "varcs", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, docLens)

        # Faster version?
        vocabScale[:,:] = 0
        means_cov_with_x_a[:,:] = 0
        for lenIdx in range(len(lens)):
            nd         = lens[lenIdx]
            start, end = inds[lenIdx], inds[lenIdx + 1]
            lhs        = la.inv(isigT + sigScale * nd * Ab) * sigScale

            for d in range(start, end, BatchSize):
                end_d = min(d + BatchSize, end)
                span  = end_d - d

                expMeans[:span,:] = np.exp(means[d:end_d,:] - means[d:end_d,:].max(axis=1)[:span,np.newaxis], out=expMeans[:span,:])
                R = sparseScalarQuotientOfDot(W[d:end_d,:], expMeans[d:end_d,:], vocab)
                S[:span,:] = expMeans[:span, :] * R.dot(vocab.T)

                # Convert expMeans to a softmax(means)
                expMeans[:span,:] /= expMeans[:span,:].sum(axis=1)[:span,np.newaxis]

                mu   = X[d:end_d,:].dot(A.T)
                rhs  = mu.dot(isigT) * isigScale
                rhs += S[:span,:]
                rhs += docLens[d:end_d,np.newaxis] * means[d:end_d,:].dot(Ab)
                rhs -= docLens[d:end_d,np.newaxis] * expMeans[:span,:] # here expMeans is actually softmax(means)

                means[d:end_d,:] = rhs.dot(lhs) # huh?! Left and right refer to eqn for a single mean: once we're talking a DxK matrix it gets swapped

                expMeans[:span,:] = np.exp(means[d:end_d,:] - means[d:end_d,:].max(axis=1)[:span,np.newaxis], out=expMeans[:span,:])
                R = sparseScalarQuotientOfDot(W[d:end_d,:], expMeans[:span,:], vocab, out=R)

                stepSize = (Tau + batchIter) ** -Kappa
                batchIter += 1

                # Do a gradient update of the vocab
                vocabScale = (R.T.dot(expMeans[:span,:])).T
                vocabScale *= vocab
                normalizerows_ip(vocabScale)
                # vocabScale += vocabPrior
                vocabScale *= stepSize
                vocab *= (1 - stepSize)
                vocab += vocabScale

                diff = (means[d:end_d,:] - mu)
                means_cov_with_x_a += diff.T.dot(diff)

#       print("Vec-Means: %f, %f, %f, %f" % (means.min(), means.mean(), means.std(), means.max()))
        debugFn (itr, means, "means", W, X, XTX, F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT, vocab, vocabPrior, dtype, means, varcs, Ab, docLens)
        
        if logFrequency > 0 and itr % logFrequency == 0:
            modelState = ModelState(F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT * sigScale, vocab, vocabPrior, Ab, dtype, MODEL_NAME)
            queryState = QueryState(means, expMeans, varcs, docLens)

            boundValues[bvIdx] = var_bound(DataSet(W, feats=X), modelState, queryState, XTX)
            boundLikes[bvIdx]  = log_likelihood(DataSet(W, feats=X), modelState, queryState)
            boundIters[bvIdx]  = itr
            perp = perplexity_from_like(boundLikes[bvIdx], docLens.sum())
            print (time.strftime('%X') + " : Iteration %d: Perplexity %4.0f bound %f" % (itr, perp, boundValues[bvIdx]))
            if bvIdx > 0 and  boundValues[bvIdx - 1] > boundValues[bvIdx]:
                printStderr ("ERROR: bound degradation: %f > %f" % (boundValues[bvIdx - 1], boundValues[bvIdx]))
#           print ("Means: min=%f, avg=%f, max=%f\n\n" % (means.min(), means.mean(), means.max()))

            # Check to see if the improvement in the likelihood has fallen below the threshold
            if bvIdx > 1 and boundIters[bvIdx] > 20:
                lastPerp = perplexity_from_like(boundLikes[bvIdx - 1], docLens.sum())
                if lastPerp - perp < 1:
                    boundIters, boundValues, likelyValues = clamp (boundIters, boundValues, boundLikes, bvIdx)
                    break
            bvIdx += 1
        
    revert_sort = np.argsort(sortIdx, kind=STABLE_SORT_ALG)
    means       = means[revert_sort,:]
    varcs       = varcs[revert_sort,:]
    docLens     = docLens[revert_sort]
    
    return \
        ModelState(F, P, K, A, R_A, fv, Y, R_Y, lfv, V, sigT * sigScale, vocab, vocabPrior, Ab, dtype, MODEL_NAME), \
        QueryState(means, expMeans, varcs, docLens), \
        (boundIters, boundValues, boundLikes)
Exemplo n.º 18
0
def var_bound(data, modelState, queryState):
    """
    Determines the variational bounds. Values are mutated in place, but are
    reset afterwards to their initial values. So it's safe to call in repeatedly.
    """

    # Unpack the the structs, for ease of access and efficiency
    W, X = data.words, data.feats
    D, T, F = W.shape[0], W.shape[1], X.shape[1]
    means, docLens = queryState.means, queryState.docLens
    K, A, U, Y, V, covA, tv, ltv, fv, lfv, vocab, vocabPrior, dtype = (
        modelState.K,
        modelState.A,
        modelState.U,
        modelState.Y,
        modelState.V,
        modelState.covA,
        modelState.tv,
        modelState.ltv,
        modelState.fv,
        modelState.lfv,
        modelState.vocab,
        modelState.vocabPrior,
        modelState.dtype,
    )

    H = 0.5 * (np.eye(K) - np.ones((K, K), dtype=dtype) / K)
    Log2Pi = log(2 * pi)

    bound = 0

    # U and V are parameters with no distribution

    #
    # Y has a normal distribution, it's covariance is unfortunately an expensive computation
    #
    P, Q = U.shape[1], V.shape[1]
    covY = np.eye(P * Q) * (lfv * ltv)
    covY += np.kron(V.T.dot(V), U.T.dot(U))
    covY = la.inv(covY, overwrite_a=True)

    # The expected likelihood of Y
    bound -= 0.5 * P * Q * Log2Pi
    bound -= 0.5 * P * Q * log(ltv * lfv)
    bound -= 0.5 / (lfv * ltv) * np.sum(Y * Y)  # 5x faster than np.trace(Y.dot(Y.T))
    bound -= 0.5 * np.trace(covY) * (lfv * ltv)
    # the traces of the posterior+prior covariance products cancel out across likelihoods

    # The entropy of Y
    bound += 0.5 * P * Q * (Log2Pi + 1) + 0.5 * safe_log_det(covY)

    #
    # A has a normal distribution/
    #
    F, K = A.shape[0], A.shape[1]
    diff = A - U.dot(Y).dot(V.T)
    diff *= diff

    # The expected likelihood of A
    bound -= 0.5 * K * F * Log2Pi
    bound -= 0.5 * K * F * log(tv * fv)
    bound -= 0.5 / (fv * tv) * np.sum(diff)

    # The entropy of A
    bound += 0.5 * F * K * (Log2Pi + 1) + 0.5 * K * safe_log_det(covA)

    #
    # Theta, the matrix of means, has a normal distribution. Its row-covarince is diagonal
    # (i.e. it's several independent multi-var normal distros). The posterior is made
    # up of D K-dimensional normals with diagonal covariances
    #
    # We iterate through the topics in batches, to control memory use
    batchSize = min(BatchSize, D)
    batchCount = ceil(D / batchSize)
    feats = np.ndarray(shape=(batchSize, F), dtype=dtype)
    tops = np.ndarray(shape=(batchSize, K), dtype=dtype)
    trace = 0
    for b in range(0, batchCount):
        start = b * batchSize
        end = min(start + batchSize, D)
        batchSize = min(batchSize, end - start)

        feats[:batchSize, :] = X[start:end, :].toarray()
        np.dot(feats[:batchSize, :], A, out=tops[:batchSize, :])
        tops[:batchSize, :] -= means[start:end, :]
        tops[:batchSize, :] *= tops[:batchSize, :]
        trace += np.sum(tops[:batchSize, :])
    feats = None

    # The expected likelihood of the topic-assignments
    bound -= 0.5 * D * K * Log2Pi
    bound -= 0.5 * D * K * log(tv)
    bound -= 0.5 / tv * trace

    bound -= 0.5 * tv * np.sum(covA)  # this trace doesn't cancel as we
    # don't have a posterior on tv
    # The entropy of the topic-assignments
    bound += 0.5 * D * K * (Log2Pi + 1) + 0.5 * np.sum(covA)

    # Distribution over word-topic assignments and words and the formers
    # entropy. This is somewhat jumbled to avoid repeatedly taking the
    # exp and log of the means
    # Again we batch this for safety
    batchSize = min(BatchSize, D)
    batchCount = ceil(D / batchSize)
    V = np.ndarray(shape=(batchSize, K), dtype=dtype)
    for b in range(0, batchCount):
        start = b * batchSize
        end = min(start + batchSize, D)
        batchSize = min(batchSize, end - start)

        meansBatch = means[start:end, :]
        docLensBatch = docLens[start:end]

        np.exp(meansBatch - meansBatch.max(axis=1)[:, np.newaxis], out=tops[:batchSize, :])
        expMeansBatch = tops[:batchSize, :]
        R = sparseScalarQuotientOfDot(
            W, expMeansBatch, vocab, start=start, end=end
        )  # BatchSize x V:   [W / TB] is the quotient of the original over the reconstructed doc-term matrix
        V[:batchSize, :] = expMeansBatch * (R[:batchSize, :].dot(vocab.T))  # BatchSize x K
        VBatch = V[:batchSize, :]

        bound += np.sum(docLensBatch * np.log(np.sum(expMeansBatch, axis=1)))
        bound += np.sum(sparseScalarProductOfSafeLnDot(W, expMeansBatch, vocab, start=start, end=end).data)

        bound += np.sum(meansBatch * VBatch)
        bound += np.sum(2 * ssp.diags(docLensBatch, 0) * meansBatch.dot(H) * meansBatch)
        bound -= 2.0 * scaledSelfSoftDot(meansBatch, docLensBatch)
        bound -= 0.5 * np.sum(docLensBatch[:, np.newaxis] * VBatch * (np.diag(H))[np.newaxis, :])

        bound -= np.sum(meansBatch * VBatch)

    return bound
Exemplo n.º 19
0
def train (data, modelState, queryState, trainPlan):
    '''
    Infers the topic distributions in general, and specifically for
    each individual datapoint.
    
    Params:
    W - the DxT document-term matrix
    X - The DxF document-feature matrix, which is IGNORED in this case
    modelState - the actual CTM model
    queryState - the query results - essentially all the "local" variables
                 matched to the given observations
    trainPlan  - how to execute the training process (e.g. iterations,
                 log-interval etc.)

    Return:
    A new model object with the updated model (note parameters are
    updated in place, so make a defensive copy if you want itr)
    A new query object with the update query parameters
    '''
    W, L, LT, X = data.words, data.links, ssp.csr_matrix(data.links.T), data.feats
    D,_ = W.shape
    out_links = np.squeeze(np.asarray(data.links.sum(axis=1)))

    # Unpack the the structs, for ease of access and efficiency
    iterations, epsilon, logFrequency, diagonalPriorCov, debug = trainPlan.iterations, trainPlan.epsilon, trainPlan.logFrequency, trainPlan.fastButInaccurate, trainPlan.debug
    means, varcs, docLens = queryState.means, queryState.varcs, queryState.docLens
    K, topicMean, topicCov, vocab, A, dtype = modelState.K, modelState.topicMean, modelState.topicCov, modelState.vocab, modelState.A, modelState.dtype

    emit_counts = docLens + out_links

    # Book-keeping for logs
    boundIters, boundValues, likelyValues = [], [], []

    if debug:
        debugFn = _debug_with_bound

        initLikely = log_likelihood(data, modelState, queryState)
        initPerp   = perplexity_from_like(initLikely, data.word_count)
        print ("Initial perplexity is: %.2f" % initPerp)
    else:
        debugFn = _debug_with_nothing

    # Initialize some working variables
    W_weight  = W.copy()
    L_weight  = L.copy()
    LT_weight = LT.copy()

    pseudoObsMeans = K + NIW_PSEUDO_OBS_MEAN
    pseudoObsVar   = K + NIW_PSEUDO_OBS_VAR
    priorSigT_diag = np.ndarray(shape=(K,), dtype=dtype)
    priorSigT_diag.fill (NIW_PSI)

    # Iterate over parameters
    for itr in range(iterations):

        # We start with the M-Step, so the parameters are consistent with our
        # initialisation of the RVs when we do the E-Step

        # Update the mean and covariance of the prior
        topicMean = means.sum(axis = 0) / (D + pseudoObsMeans) \
                  if USE_NIW_PRIOR \
                  else means.mean(axis=0)
        debugFn (itr, topicMean, "topicMean", data, K, topicMean, topicCov, vocab, dtype, means, varcs, A, docLens)

        if USE_NIW_PRIOR:
            diff = means - topicMean[np.newaxis,:]
            topicCov = diff.T.dot(diff) \
                 + pseudoObsVar * np.outer(topicMean, topicMean)
            topicCov += np.diag(varcs.mean(axis=0) + priorSigT_diag)
            topicCov /= (D + pseudoObsVar - K)
        else:
            topicCov = np.cov(means.T) if topicCov.dtype == np.float64 else np.cov(means.T).astype(dtype)
            topicCov += np.diag(varcs.mean(axis=0))

        if diagonalPriorCov:
            diag = np.diag(topicCov)
            topicCov = np.diag(diag)
            itopicCov = np.diag(1./ diag)
        else:
            itopicCov = la.inv(topicCov)

        debugFn (itr, topicCov, "topicCov", data, K, topicMean, topicCov, vocab, dtype, means, varcs, A, docLens)
#        print("                topicCov.det = " + str(la.det(topicCov)))

        # Building Blocks - temporarily replaces means with exp(means)
        expMeansCol = np.exp(means - means.max(axis=0)[np.newaxis, :])
        lse_at_k = np.sum(expMeansCol, axis=0)
        F = 0.5 * means \
          - (1. / (2*D + 2)) * means.sum(axis=0) \
          - expMeansCol / lse_at_k[np.newaxis, :]

        expMeansRow = np.exp(means - means.max(axis=1)[:, np.newaxis])
        W_weight   = sparseScalarQuotientOfDot(W, expMeansRow, vocab, out=W_weight)

        # Update the vocabularies

        vocab *= (W_weight.T.dot(expMeansRow)).T # Awkward order to maintain sparsity (R is sparse, expMeans is dense)
        vocab += VocabPrior
        vocab = normalizerows_ip(vocab)

        docVocab = (expMeansCol / lse_at_k[np.newaxis, :]).T # FIXME Dupes line in definitino of F

        # Recalculate w_top_sums with the new vocab and log vocab improvement
        W_weight = sparseScalarQuotientOfDot(W, expMeansRow, vocab, out=W_weight)
        w_top_sums = W_weight.dot(vocab.T) * expMeansRow

        debugFn (itr, vocab, "vocab", data, K, topicMean, topicCov, vocab, dtype, means, varcs, A, docLens)

        # Now do likewise for the links, do it twice to model in-counts (first) and
        # out-counts (Second). The difference is the transpose
        LT_weight    = sparseScalarQuotientOfDot(LT, expMeansRow, docVocab, out=LT_weight)
        l_intop_sums = LT_weight.dot(docVocab.T) * expMeansRow
        in_counts    = l_intop_sums.sum(axis=0)

        L_weight     = sparseScalarQuotientOfDot(L, expMeansRow, docVocab, out=L_weight)
        l_outtop_sums = L_weight.dot(docVocab.T) * expMeansRow

        # Reset the means and use them to calculate the weighted sum of means
        meanSum = means.sum(axis=0) * in_counts

        # And now this is the E-Step, though itr's followed by updates for the
        # parameters also that handle the log-sum-exp approximation.

        # Update the Variances: var_d = (2 N_d * A + itopicCov)^{-1}
        varcs = np.reciprocal(docLens[:, np.newaxis] * (0.5 - 1./K) + np.diagonal(topicCov))
        debugFn (itr, varcs, "varcs", data, K, topicMean, topicCov, vocab, dtype, means, varcs, A, docLens)

        # Update the Means
        rhs  = w_top_sums.copy()
        rhs += l_intop_sums
        rhs += l_outtop_sums
        rhs += itopicCov.dot(topicMean)
        rhs += emit_counts[:, np.newaxis] * (means.dot(A) - rowwise_softmax(means))
        rhs += in_counts[np.newaxis, :] * F
        if diagonalPriorCov:
            raise ValueError("Not implemented")
        else:
            for d in range(D):
                rhs_         = rhs[d, :] + (1. / (4 * D + 4)) * (meanSum - in_counts * means[d, :])
                means[d, :]  = la.inv(itopicCov + emit_counts[d] * A + np.diag(D * in_counts / (2 * D + 2))).dot(rhs_)
                if np.any(np.isnan(means[d, :])) or np.any (np.isinf(means[d, :])):
                    pass

                if np.any(np.isnan(np.exp(means[d, :] - means[d, :].max()))) or np.any (np.isinf(np.exp(means[d, :] - means[d, :].max()))):
                    pass

        debugFn (itr, means, "means", data, K, topicMean, topicCov, vocab, dtype, means, varcs, A, docLens)

        if logFrequency > 0 and itr % logFrequency == 0:
            modelState = ModelState(K, topicMean, topicCov, vocab, A, dtype, MODEL_NAME)
            queryState = QueryState(means, varcs, docLens)

            boundValues.append(var_bound(data, modelState, queryState))
            likelyValues.append(log_likelihood(data, modelState, queryState))
            boundIters.append(itr)

            print (time.strftime('%X') + " : Iteration %d: bound %f \t Perplexity: %.2f" % (itr, boundValues[-1], perplexity_from_like(likelyValues[-1], docLens.sum())))
            if len(boundValues) > 1:
                if boundValues[-2] > boundValues[-1]:
                    printStderr ("ERROR: bound degradation: %f > %f" % (boundValues[-2], boundValues[-1]))

                # Check to see if the improvement in the bound has fallen below the threshold
                if False and itr > 100 and abs(perplexity_from_like(likelyValues[-1], docLens.sum()) - perplexity_from_like(likelyValues[-2], docLens.sum())) < 1.0:
                    break


    return \
        ModelState(K, topicMean, topicCov, vocab, A, dtype, MODEL_NAME), \
        QueryState(means, varcs, docLens), \
        (np.array(boundIters), np.array(boundValues), np.array(likelyValues))