Exemplo n.º 1
0
def write_training_result(global_step: int, id: List[int], text: List[str],
                          predicted_mel: List[np.ndarray],
                          ground_truth_mel: List[np.ndarray],
                          mel_length: List[int], alignment: List[np.ndarray],
                          filename: str):
    batch_size = len(ground_truth_mel)
    raw_predicted_mel = [m.tostring() for m in predicted_mel]
    raw_ground_truth_mel = [m.tostring() for m in ground_truth_mel]
    mel_width = ground_truth_mel[0].shape[1]
    padded_mel_length = [m.shape[0] for m in ground_truth_mel]
    predicted_mel_length = [m.shape[0] for m in predicted_mel]
    raw_alignment = [a.tostring() for a in alignment]
    alignment_source_length = [a.shape[1] for a in alignment]
    alignment_target_length = [a.shape[2] for a in alignment]
    example = tf.train.Example(features=tf.train.Features(
        feature={
            'global_step': int64_feature([global_step]),
            'batch_size': int64_feature([batch_size]),
            'id': int64_feature(id),
            'text': bytes_feature(text),
            'predicted_mel': bytes_feature(raw_predicted_mel),
            'ground_truth_mel': bytes_feature(raw_ground_truth_mel),
            'mel_length': int64_feature(padded_mel_length),
            'mel_length_without_padding': int64_feature(mel_length),
            'predicted_mel_length': int64_feature(predicted_mel_length),
            'mel_width': int64_feature([mel_width]),
            'alignment': bytes_feature(raw_alignment),
            'alignment_source_length': int64_feature(alignment_source_length),
            'alignment_target_length': int64_feature(alignment_target_length),
        }))
    write_tfrecord(example, filename)
Exemplo n.º 2
0
def write_preprocessed_target_data(_id: int, key: str, mel: np.ndarray,
                                   filename: str):
    raw_mel = mel.tostring()
    example = tf.train.Example(features=tf.train.Features(
        feature={
            'id': int64_feature([_id]),
            'key': bytes_feature([key.encode('utf-8')]),
            'mel': bytes_feature([raw_mel]),
            'target_length': int64_feature([len(mel)]),
            'mel_width': int64_feature([mel.shape[1]]),
        }))
    write_tfrecord(example, filename)
Exemplo n.º 3
0
def write_preprocessed_source_data(_id: int, key: str, source: np.ndarray,
                                   text, phones: np.ndarray, phone_txt,
                                   speaker_id, age, gender, filename: str):
    raw_source = source.tostring()
    phones = phones if phones is not None else np.empty([0], dtype=np.int64)
    phone_txt = phone_txt if phone_txt is not None else ''
    example = tf.train.Example(features=tf.train.Features(
        feature={
            'id': int64_feature([_id]),
            'key': bytes_feature([key.encode('utf-8')]),
            'source': bytes_feature([raw_source]),
            'source_length': int64_feature([len(source)]),
            'text': bytes_feature([text.encode('utf-8')]),
            'phone': bytes_feature([phones.tostring()]),
            'phone_length': int64_feature([len(phones)]),
            'phone_txt': bytes_feature([phone_txt.encode('utf-8')]),
            'speaker_id': int64_feature([speaker_id]),
            'age': int64_feature([age]),
            'gender': int64_feature([gender]),
        }))
    write_tfrecord(example, filename)
Exemplo n.º 4
0
def write_postnet_training_result(global_step: int, ids: List[str],
                                  predicted_spec: List[np.ndarray],
                                  ground_truth_spec: List[np.ndarray],
                                  spec_length: List[int], filename: str):
    batch_size = len(ground_truth_spec)
    raw_predicted_spec = [m.tostring() for m in predicted_spec]
    raw_ground_truth_spec = [m.tostring() for m in ground_truth_spec]
    spec_width = ground_truth_spec[0].shape[1]
    padded_spec_length = [m.shape[0] for m in ground_truth_spec]
    predicted_spec_length = [m.shape[0] for m in predicted_spec]
    ids_bytes = [s.encode("utf-8") for s in ids]
    example = tf.train.Example(features=tf.train.Features(
        feature={
            'global_step': int64_feature([global_step]),
            'batch_size': int64_feature([batch_size]),
            'id': bytes_feature(ids_bytes),
            'predicted_spec': bytes_feature(raw_predicted_spec),
            'ground_truth_spec': bytes_feature(raw_ground_truth_spec),
            'spec_length': int64_feature(padded_spec_length),
            'spec_length_without_padding': int64_feature(spec_length),
            'predicted_spec_length': int64_feature(predicted_spec_length),
            'spec_width': int64_feature([spec_width]),
        }))
    write_tfrecord(example, filename)